In The Matter Of:

Apple
vs.
Motorola

Leonard Cimini, Ph.D.

July 13, 2011

MERRILL CORPORATION

IN THE UNITED STATES DISTRICT COURT
FOR THE WESTERN DISTRICT OF WISCONSIN

```
APPLE INC. and NEXT )
SOFTWARE, INC., (f/k/a )
NeXT COMPUTER, INC., )
) Civil Action No.
    Plaintiffs and ) 10-CV-662 (BBC)
    Counterclaim-Defendants,)
    -vs-
MOTOROLA, INC. and MOTOROLA)
MOBILITY, INC., )
    Defendants and ,
    Counterclaim-Plaintiffs.)
```

Videotape deposition of LEONARD CIMINI, Ph.D. taken pursuant to notice at the law offices of Morris, Nichols, Arsht \& Tunnell, 1201 Market Street, 18th Floor, Wilmington, Delaware, beginning at 11:00 a.m. on July 13, 2011, before Julianne LaBadia, Registered Diplomate Reporter and Notary Public.

APPEARANCES:
ROBERT T. HASLAM, ESQ. COVINGTON \& BURLING, LLP
333 Twin Dolphin Drive - Suite 700
Redwood Shores, California 94065-1418
For the Plaintiffs/Counterclaim-Defendants
(APPEARANCES CONTINUED)

WILCOX \& FETZER
1330 King Street, Wilmington, Delaware 19801
(302) 655-0477
www.wilfet.com

Merrill Corporation - Chicago

	Page 2		Page 4
1	MARC K. WEINSTEIN, ESQ.	1	in front of a judge in a court?
	QUINN EMANUEL URQUHART \& SULLIVAN, LLP	2	A. Yes.
2	NBF Hibiya Bldg, 25F	3	Q. And just to confirm, also, there's no
3	Tokyo 100-0011, Japan	4	reason that you are impaired in any way this
	For the Defendant/Counterclaim	5	morning in giving your testimony? There's no
4		6	medication or anything that --
	ALSO PRESENT: Lindsay DuPhily - Discovery Video	7	A. No.
5	Services	8	Q. Okay. Have you been deposed before?
6		9	A. Yes.
7		10	Q. How many times?
9	THE VIDEOGRAPHER: This is the	11	A. Twice.
10	videotape deposition of Dr. Leonard Cimini, taken	12	Q. Twice. And what were those matters
11	by the defendant in the matter of Apple, Inc.,	13	related to?
12	and NeXT Software, Inc., a/k/a NeXT Computer,	14	A. One was a patent case, an expert witness
13	Inc., plaintiffs and counterclaim-defendants,	15	testimony, and I -- it was -- the defendant was
15	versus Motorola, Inc., and MotorolaMobility, Inc., defendants and counterclaim-plaintiffs, in	16	Syro, and I was retained by Hewlett Packard.
16	and for the United States District Court for the	17	Q. Okay. And the other matter?
17	Western District of Wisconsin, case number	18	A. The other matter was a civil case, my own.
18	10-CV-662.	19	I had an addition built and sued the builder.
19	This deposition is being held at	20	Q. Oh. Okay. And have you ever submitted an
20	Morris, Nichols, Arsht \& Tunnell, Wilmington,	21	expert declaration previously?
21	Delaware. We're going on the record on July 13,	$\begin{aligned} & 21 \\ & 22 \end{aligned}$	A. Yes.
$\begin{aligned} & 22 \\ & 23 \end{aligned}$	2011, at approximately 11:00 a.m. The court reporter is Juli LaBadia	23	Q. And was that also in the HP matter?
24	from the firm of Wilcox \& Fetzer, Wilmington,	24	A. Yes.
	Page 3		Page 5
1	Delaware. My name is Lindsay DuPhily. I'm the	1	Q. Any other times?
2	videotape specialist of Discovery Video Services,	2	A. One time -- the first case I ever worked
3	in association with Wilcox \& Fetzer.	3	on, in 2004, it was Agere Broadcom, and I don't
4	Counsel will now introduce	4	know if it was actually ever submitted. The case
5	themselves, and then the court reporter will	5	was settled right around the time that I wrote
6	swear in the witness.	6	
7	MR. WEINSTEIN: I'm Marc Weinstein	7	Q. And in HP, what was the technology
8	of Quinn Emanuel, representing Motorola.	8	involved?
9	MR. HASLAM: Bob Haslam, Covington \&	9	A. Wi-fi.
10	Burling, representing Apple, Inc. and NeXT.	10	Q. And can you be more specific? Wi-fi for
11	LEONARD CIMINI, Ph.D.	11	cellular networks? Wi-fi for --
12	The witness herein, having first been	12	A. No, no. Wi -- actively 802.11.
13	duly sworn on oath, was examined and	13	Q. 802.11?
14	testified as follows:	14	A. Yes.
15	DIRECT EXAMINATION	15	Q. Okay. Have you ever testified in court
16	BY MR. WEINSTEIN:	16	before?
17	Q. Okay. Thank you for coming this morning.	17	A. No.
18	Could you just give me your full name and the	18	Q. And this is your first time being retained
19	spelling.	19	as an expert for Apple?
20	A. Leonard Cimini. Last name, C-i-m-i-n-i.	20	A. Yes.
21	Q. And just confirm that you understand	21	Q. And have you previously been retained by
22	you're under oath?	22	Covington \& Burling as an expert?
23	A. Yes.	23	A. No.
24	Q. That this is no different than testifying	24	Q. I guess the first, Cimini Exhibit Number 1

	Page 6		Page 8
1	is Dr. Cimini's CV.	1	and proposed that for the next generation.
2	(Cimini Exhibit 1 marked for	2	Q. Can you explain OFDM.
3	identification)	3	A. So, OFDM is what's used in Wi-fi in 802.11
4	BY MR. WEINSTEIN:	4	today.
5	Q. So, the CV is fairly self-explanatory, but	5	Q. Uh-huh.
6	I would just like to go through a few items.	6	A. And in many systems.
7	A. Okay.	7	Q. What other systems is it used in?
8	Q. To have a better understanding of the	8	A. WiMax. WiMax is sort of a smaller
9	things that you have researched and worked on.	9	distance cellular type system that's popular
10	First, can you just tell me a little bit about	10	especially in Korea. It's called WiBro there,
11	your Ph.D.? What was the focus of that?	11	for broadband.
12	A. My Ph.D. was on, in the broad sense,	12	Q. Uh-huh.
13	detection and estimation theory. And it was	13	A. And the main problem with transmitting at
14	specifically on robust detection and estimation.	14	higher bit rates is the fact that the signal gets
15	So, the gist of that is that you try to -- when	15	to the destination by multiple paths. So when it
16	you design a system, you don't actually know what	16	arrives, it has spread your pulse, because they
17	the environment is like. You make a guess. And	17	arrive at different times, these different paths.
18	if you design your system based on your guess,	18	Q. Uh-huh.
19	you're often quite wrong, and the system degrades	19	A. And so, what happens is your pulse spreads
20	rapidly. So, you design it based on sort of a	20	into the next pulse. This is called intersymbol
21	class of guesses.	21	interference. And that's the main limitation in
22	Q. Okay.	22	transmitting at higher bit rates.
23	A. And that's what my -- it was mainly on.	23	So, what OFDM does, is it's
24	The title, it doesn't sound like that. It's Sum	24	essentially the same as saying if I have a wire
	Page 7		Page 9
1	Results and Quantization In Filtering and	1	that allows me to transmit one megabit per
2	Detection.	2	second --
3	Q. And your first job after getting your	3	Q. Uh-huh.
4	Ph.D. was with AT\&T?	4	A. -- if I want to transmit 10 megabits per
5	A. Yes.	5	second, I take 10 wires and I put them together.
6	Q. And please tell me the things you, in your	6	And that's what OFDM is. Except the wires are
7	initial role there, what are the things you	7	not wires. They're frequencies. They're
8	worked on?	8	frequency bands.
9	A. My -- I worked in a group that did	9	So OFDM stands for orthogonal
10	cellular systems engineering. This is before	10	frequency division and multiplexing. And in 1982
11	there were cellular systems.	11	it couldn't be built, even at very low rates.
12	Q. And the timing of that was?	12	And so, we -- we gave up on that technology,
13	A. April, 1982.	13	until the late '80s and early '90s, when DSP
14	Q. Okay. And what did you do for cellular	14	technology progressed enough that we could build
15	systems engineering?	15	
16	A. My -- my job, I worked in a	16	Q. And that's digital signal processing?
17	forward-looking radio group. We didn't call it	17	A. Yes. In 1982, digital signal processors
18	wireless. It was radio then.	18	were very, very new.
19	Q. Uh-huh.	19	Q. Okay. And so, this was done in
20	A. And my job was next generation cellular.	20	development throughout the early, mid, and late
21	So we didn't have a first, but mine was the next,	21	'80s?
22	which would be digital cellular. And my job was	22	A. That was from 1982 to 1985.
23	to determine what modulation techniques should be	23	Q. Okay.
24	used. So I worked on a technology called OFDM,	24	A. And then in 1985, I moved to the research

Merrill Corporation - Chicago

	Page 10		Page 12
1	area at Bell Labs, and worked on fiberoptic	1	(Cimini Exhibit 2 marked for
2	communications for five years.	2	identification)
3	And then in 1990, I went back to	3	MR. HASLAM: I've got a copy,
4	working on radio wireless systems. Both	4	thanks.
5	cellular -- at that point, it would be 3G	5	MR. WEINSTEIN: Okay. You bet.
6	systems.	6	BY MR. WEINSTEIN:
7	Q. Uh-huh.	7	Q. This is Dr. Cimini's declaration that was
8	A. Although they weren't called that then,	8	submitted as part of Apple's opening claim
9	either. And in building systems, you know,	9	construction brief. Okay. If you would turn to
10	wi-fi, 802.11 type systems. And I did that until	10	page 2.
11	2002, when AT\&T downsized, and I came to the	11	A. Yup.
12	University of Delaware.	12	Q. In paragraph 9, you said, "In preparing
13	Q. And in the U.S., what systems use OFDM?	13	this declaration, I have extensively reviewed
14	A. $80-$ - the initial one was 802.11 A . But	14	various materials, including the '559 patent and
15	802.11 , the current version, 802.11G, 802.11 N ,	15	its file history." Can you tell me what other
16	and the newer systems, which will come out later,	16	materials that you referred to?
17	802.11AC. They all use OFDM. And WiMax, which	17	A. For this dec -- for making this
18	is 802.16. 802.16. I don't know how many WiMax	18	declaration?
19	systems are deployed in the United States.	19	Q. Yes.
20	Q. And is OFDM used for any other --	20	A. Just the '559 patent and its file history.
21	A. OFDM is part of the third --	21	Q. So if the -- any statement that you've
22	Q. That's what --	22	made in the declaration, if it was not from the
23	A. -- generation cellular systems. But only	23	'559 patent or the file history, was it just
24	for the downlink. So, from the base station to	24	based on your general knowledge?
	Page 11		Page 13
1	the mobile units. And only in some forms of it.	1	A. Yes.
2	Q. Okay. And then you've now been at	2	Q. So there were no other technical papers or
3	Delaware since ' 92 as a professor?	3	books or documents that you --
4	A. 2002.	4	A. Not in writing this declaration.
5	Q. 2002.	5	Q. Were there any discussions you had with
6	A. Yes.	6	other professors or engineers in helping to
7	Q. And what are the topics that you teach?	7	prepare the dec?
8	A. Mostly communications. So I teach a	8	A. No.
9	graduate course in digital communications. I	9	Q. Did you, in fact, write the declaration
10	teach an undergraduate course, senior level, in	10	yourself?
11	communication systems. And I teach a sophomore	11	A. The Covington attorneys and I wrote the
12	level course that's called signals and systems.	12	patent -- wrote the declaration together.
13	It's the basic -- what are called linear time and	13	Q. Okay. In paragraph 10, you say, "The '559
14	variance systems.	14	patent is directed to the field of wireless
15	Q. I'm familiar with that course.	15	telecommunication systems, and that addresses the
16	A. Okay. Yeah. Everyone has to take that	16	problem of multiple cellular telephones trying to
17	course.	7	communicate with the same base station in the
18	Q. Yes.	18	cellular network at the same time."
19	A. It's a required course.	19	On what basis do you make that
20	Q. Yes. Okay. Is there any cellular system	20	statement?
21	around the world that uses OFDM?	21	A. From the description and specification of
22	A. Not at the present time.	22	the patent.
23	Q. Okay. I'd like to introduce as Cimini	23	Q. And could you point -- oh.
24	Exhibit Number 2, this is -- sorry.	24	A. I don't have --

	Page 14		Page 16
1	Q. Before we do that. Yes.	1	So from the time that a cell phone
2	A. Yeah.	2	enters a cell to the time that it actually
3	Q. Let me introduce as Cimini Exhibit Number	3	transmits the preamble sequence, can you explain
4	3, this is U.S. patent number $6,175,559$, to Tyler	4	what steps take place?
5	Brown.	5	A. Not exactly. So, I can tell you in
6	(Cimini Exhibit 3 marked for	6	general terms.
7	identification)	7	Q. Okay.
8	BY MR. WEINSTEIN:	8	A. So when you're -- when you have your cell
9	A. Yeah. Thank you. Were you waiting for my	9	phone and you're in a -- in an area, you're in
10	answer?	10	Wilmington.
11	Q. Yes.	11	Q. Uh-huh.
12	A. Okay. Sorry. So, in -- in column 1,	12	A. You turn your phone on. Your phone
13	around line 15 --	13	immediately makes contact with the cellular
14	Q. Uh-huh.	14	system, trying to find the nearest base station.
15	A. -- because multiple mobile stations may be	15	So that's all part of the initial process. Just
16	trying to access the channel simultaneously.	16	knowing where you are, first of all.
17	Q. Okay. And just to step back a bit. In	17	Q. Okay.
18	preparing for today, did you review the '559	18	A. But the process where now you have
19	patent again?	19	something to send is slightly different than --
20	A. Yes.	20	this is more about the mobile station initiating,
21	Q. And when did you do that?	21	you know, communications with the base station.
22	A. Yesterday, and Sunday.	22	Q. Such as making a phone call?
$\begin{aligned} & 23 \\ & 24 \end{aligned}$	Q. And were there any other materials that you used in preparing?	23	A. Such as making a phone call, or a text,
24	you used in preparing?	24	anything.
	Page 15		Page 17
1	A. Yes. I looked at -- I looked at several	1	Q. Right.
2	of the other patents that I had.	2	A. And so, what you need is you need some
3	Q. Several other patents --	3	information that needs to be exchanged with the
4	A. I can't remember all the numbers.	4	base station, that one, allows the base station
5	Q. Several other patents related to this	5	to know you're there, and to do synchronization.
6	patent?	6	And that's what this short preamble is for.
7	A. Related to this one.	7	So this would happen almost
8	Q. Anything else? Any other technical	8	immediately when you have something to send. In
9	documents?	9	general terms. I can't tell you exactly how --
10	A. No.	10	Q. Okay.
11	Q. Did you refer to any --	11	A. -- 3 G operates, or even a 2 G system.
12	A. Oh, wait. Yes. The 3GPP. Some of the	12	Q. Okay. So before the preamble is actually
13	3GPP documents.	13	sent, are there steps, are there any other
14	Q. Did that include the -- I'm sorry. A 3GPP	14	communications that occur between the mobile
15	TS25.213 standard?	15	station and the base station?
16	A. Yes.	16	A. I don't know how each system operates, but
17	Q. Okay. So, and the next line in paragraph	17	in the older cellular systems, so if we go back
18	10, it says, "When a new cellular telephone	18	to the 2 G , what happened is as soon as you
19	enters a cell, it must notify the base station of	19	were -- your phone is turned on, with nothing to
20	its presence so that it can begin to send and	20	transmit, there's essentially something that
21	receive data on the network. The new cellular	21	would be -- you can call a beacon, that allows
22	telephone transmits a choice signal called a	22	the station to -- to know where you are, within
23	preamble to allow the base station to detect its	23	which cell you are.
24	presence."	24	Q. So the beacon is from -- from which to

	Page 18		Page 20
1	which? From the mobile station to --	1	Q. "Because many new cellular telephones
2	A. It would be from the base station to the	2	often enter a cell at the same time, multiple new
3	mobile. Setting up sort of a handshaking, to say	3	cellular telephones may try to transmit preambles
4	yes, I know you're there. But in the newer	4	to the base station at the same time." And what
5	systems, that might not be necessary. I'm not	5	was the basis for that statement?
6	sure.	6	A. So, let me see if I can find the line.
7	Q. So in the newer system -- I'm sorry. So	7	Right. So, this comes from -- you can go, the
8	for 3G, it might not --	8	same line we read before, "because multiple
9	A. It might not be necessary. But I can't	9	mobile stations may be trying to access the
10	say.	10	channel simultaneously." Right. So that
11	Q. Okay. Then the last line is that "The	11	corresponds to many users -- "multiple new
12	base station then transmits to the new cellular	12	cellular telephones might try to transmit the
13	telephone a unique identifying value that the new	13	preamble to the base station at the same time."
14	cellular telephone uses in future transmissions."	14	So that comes from simultaneously.
15	Can you explain, what is the unique identifying	15	Q. Uh-huh. And then the following statement,
16	value?	16	"The base station must be able to distinguish the
17	A. So, the unique identifying value depends	17	different preambles."
18	on the system, right. So let's assume that it's	18	A. Right. So this -- this comes from reading
19	a CDMA system. So either -- either 2G or the	19	the patent, but basically, also general
20	newer 3G.	20	knowledge, right? So if you need to -- if you
21	Q. Uh-huh.	21	have multiple users all trying to access the
22	A. So what the base station would have to	22	channel at the same time, you need a way to
23	tell the cell -- the cell phone is how that --	23	separate them.
24	how to communicate so that the base station can	24	Q. Okay.
	Page 19		Page 21
1	distinguish it from other users, and the mobile	1	A. Otherwise they just look like one blob of
2	station is transmitting to the correct base	2	noise to the base station. So the base station
3	station.	3	needs to be able to separate these.
4	Q. Okay.	4	Q. Okay. And the '559 patent, you're saying,
5	A. So this identifying value could be a code,	5	is directed to CDMA?
6	if it's a CDMA system. And that's how 2G and 3G	6	A. Yeah. That's what it says.
7	would operate for CDMA.	7	Q. Okay. And is it -- is the '559 patent
8	Q. Okay. And the code, is the code actually	8	also applicable to other forms of cellular
9	sent from the base station to the mobile station?	9	systems?
10	A. The code is actually sent from the --	10	A. No.
11	okay. So I should back up. I'm not sure if the	11	Q. Okay. In paragraph 12, you get into doing
12	actual code is sent. It could be that the base	12	some background on CDMA systems. The second
13	station sends to the mobile station an index, so	13	sentence, "CDMA allows multiple cellular
14	the mobile station has a table where the code --	14	telephones to use the same physical communication
15	say index 7 means this code.	15	channel." Can you explain what that means?
16	Or it could be, actually send, if	16	A. So, the -- you need to separate users in
17	it's being done by some circuitry that's	17	some way. And so, you can separate them in time
18	generating the code, it can tell it the -- the	18	or frequency. So that means users use different
19	weights on the -- on the shift register. I don't	19	times, so you get a turn and I get a turn. Or
20	know how it's actually done.	20	use different frequencies, which is the way the
21	Q. Okay.	21	oldest systems operated. Or there's another way,
22	A. In the newer systems.	22	where you can use the same time and the same
23	Q. Okay. Let's move on to paragraph 11.	23	frequency, but each user is assigned a different
24	A. Okay.	24	code.

Merrill Corporation - Chicago

And ideally, these codes are orthogonal, so that at the destination, at the base station, each user has a different code. The base station correlates with each of these codes, and separates the users. So they're allowed to use the same frequency channel at the same time.

(Phone beeps)

MR. WEINSTEIN: Excuse me.
Q. In the last clause, it says, "Without significant interference by encoding transmitted data, using a code that is unique to that cellular telephone, and that can be distinguished from the codes of all cellular -- all other cellular telephones." Is that the same unique code you were talking about before?
A. Yes. I -- in the previous explanation, I actually answered, you know, explained the next sentence.
Q. Okay. So that's after the preamble has been sent?
A. Well, it's a combination, right? So there's two -- there's two features to a communication system, right? There's the
synchronization access, and then there's actual transmission of data.
Q. Okay.
A. So the code would be used in -- a code would be used in both cases.
Q. Okay.
A. But it's in a -- in the preamble part, you're going to separate users to start access to the channel. In the -- once you have access, then the actual data communication occurs, potentially with a different code. It depends on how the system is designed.
Q. Okay. And in the CDMA, is that the same code or different codes?
A. CDMA stands for code division multiple access.
Q. Right.
A. It simply means that each user has a different code.
Q. That would be --
A. In order to access the channel, and in order to transmit data.
Q. Right. The code used for the preamble, and then the code used for later messaging, is
that the same code or different code in CDMA?
A. It could be either. In the simplest case, it would be the same.
Q. All right.
A. But --
Q. Can you explain to me, I know you've given me some background on it, but what are the primary differences between CDMA and OFDM/FDMA?

A. Okay. So --

MR. HASLAM: I'm going to let him answer that, but I'm going to object on the relevance of that. It's not a topic that's discussed in his declaration, and that's what we're here to talk about.

MR. WEINSTEIN: Well -- okay.
Q. Please answer.
A. Okay. So, FDMA means I separate users by
different -- each user uses a different
frequency. So the very first cellular system, for example, which was analog, called amps, used separate frequencies. So you were given a frequency, and you kept it forever. That frequency channel was yours. That's similar to your -- when you pick up a wired telephone. You

24
get that wire, and that wire is yours and no one else uses it.

In -- in TDMA, we all use the same wire, but we share it. So I use it first, and then you use it. In CDMA, we all use the wire, all use it at the same time, but we all use a different code.

OFDM is not the same class. It's not an access technology. OFDM is a modulation technique that permits you to transmit at higher bit rates. So it applies to one user at a time. And it could apply to all three systems: CDMA, TDMA, or FDMA.
Q. Okay. So, I'm sorry. So OFDM can be used in CDMA?
A. Yeah, it can. There are plenty of technologies that are called multi-carrier CDMA, that look very much like OFDM.
Q. And those are used in the U.S.?
A. I don't know. The 3G technologies, some of the original 3 G proposals were multi-carrier CDMA, but I don't know how much of it is actually being -- going to be deployed, or even considered in the future.

	Page 26		Page 28
1	Q. Okay. I'd like to enter as -- this is now	1	short courses that covered CDMA.
2	Cimini Exhibit Number 4. And this is just a list	2	Q. Okay. And returning to your declaration,
3	of Dr. Cimini's publications.	3	in paragraph 13, you said, "The basic unit of
4	(Cimini Exhibit 4 marked for	4	information transmitted over CDMA is called a
5	identification)	5	chip." Can you explain the meaning of a chip?
6	BY MR. WEINSTEIN:	6	A. In the -- the fundamental principle of
7	Q. And this is a publication list that comes	7	CDMA that allows it to -- to work, is that what
8	from the University of Delaware's website that's	8	you do is you take a given user or information
9	linked to your bio.	9	symbols from the user, information from the user,
10	A. Okay. Yeah.	10	and you spread it over a very large band. And
11	Q. And this, it lists your journal articles.	11	then all the users sort of pile on top of each
12	Also conference papers, your patents, and your	12	other.
13	books. Books is on -- I guess it's page 6.	13	Q. Uh-huh.
14	A. Page 6.	14	A. And so, the fundamental time unit, when
15	Q. No, I'm sorry. It's not there. I'm	15	you spread something, means that the time
16	sorry. It's on the very last page. Page 8.	16	interval now is much shorter. So, if a pulse was
17	A. Yes.	17	of width T before, if you spread it by a factor
18	Q. Okay.	18	of N , the fundamental pulse is now T divided by
19	A. They're just book chapters.	19	N. And that fundamental pulse is called a chip,
20	Q. Those are just book chapters?	20	to mean part of a -- of a bit.
21	A. Yes.	21	Q. Okay. And the next sentence you say, "A
22	Q. And do any of those book chapters relate	22	chip is binary, meaning it has a value of either
23	to CDMA?	23	1 's and 0's or plus 1 and minus 1. These are --
24	A. No.	24	those are real values." Is there a difference
	Page 27		Page 29
1	Q. And in this, there are 50 journal articles	1	between a chip with a real value and one that has
2	listed. I guess the majority are relating to	2	an imaginary or complex?
3	OFDM. Do any of them relate to CDMA?	3	A. No. In general, a chip could be. More
4	A. I'm sorry. I'm trying -- I'm looking	4	typically, and I don't think I've ever seen a
5	through it --	5	chip in an implementation that was not real
6	Q. Sure.	6	valued, and simply plus or minus 1.
7	A. -- to see if there are. No. I don't -- I	7	Q. So in all implementations, it's -- it's a
8	don't believe so.	8	real value. Does that -- throughout the
9	Q. Okay. And is that also the case for	9	generation and transmission process of any data,
10	the -- the conference papers?	10	it's always going to be a plus 1 or minus 1
11	A. I would think so.	11	value?
12	Q. There's quite a few more.	12	A. No. That's not true.
13	A. Yes.	13	Q. Okay. Can you explain why that's not so?
14	Q. And just also to confirm, also for your	14	A. Right. Because in general, the
15	patents?	15	transmitted -- all information that's transmitted
16	A. No. No CDMA.	16	over the air -- air is real. All right? You
17	Q. So, in -- in providing the overview of	17	can't transmit imaginary things.
18	CDMA, how -- on what basis do you -- are you able	18	Q. Uh-huh.
19	to discuss it?	19	A. But from a mathematical implementation
20	A. CDMA is a well-known technology, and	20	point of view, you think of the information that
21	it's -- it's well developed already in textbooks.	21	you're transmitting as complex. Which means it
22	And I've worked in cellular and wi-fi for almost	22	has a real and an imaginary part. Or from an
23	30 years, so I've developed a background where I	23	implementation point of view, it has an in phase
24	understand these. And I've taught courses and	24	and quadrature part.

Merrill Corporation - Chicago

	Page 30		Page 32
1	Q. Can you explain that? In phase and	1	So that's why you would use phase modulation.
2	quadrature part?	2	Q. And is that what CDMA systems use?
3	A. Simply mean that it has -- let's take an	3	A. The old -- the 2G systems used QPSK and
4	example. That we -- if we want to send a pulse,	4	BPSK. So mainly, the original systems used plus
5	and we can modulate that pulse in many ways. So	5	or minus 1's only.
6	we can modulate its amplitude, or we can modulate	6	Q. But in the 3G system you don't know?
7	its phase, or frequency.	7	A. In the 3G systems, the modulation
8	If we modulate its phase, what we're	8	techniques go to multiple levels.
9	doing, and you can think of it as a	9	Q. Can you explain that?
10	two-dimensional plane. So there's the real and	10	A. So, they -- they -- if you take the QPSK,
11	imaginary parts. And what we're doing is we're	11	and you just consider more points in each
12	rotating it as we change its phase. So one of	12	quadrant, think of it in a rectangular grid, or a
13	the simple modulation techniques is called QPSK,	13	square grid. And that's what they use. What
14	and we represent that as four complex numbers.	14	you'd like to do is get the highest bit rate you
15	Think of it as the four -- one point in each	15	possibly can. And so, you want to send as many
16	quadrant.	16	bits for each pulse that you transmit. Okay?
17	Q. Right. So plus 1 minus J, plus 1 plus	17	Q. Okay. And so then for each pulse, what?
18	minus 1 minus J, minus 1 plus J ?	18	A. They transmit as many as 6 bits, I think.
19	A. Correct. That's correct.	19	Q. And when you say 6 bits, that's six plus
20	Q. Okay. And what is the point of modulating	20	1's or minus 1's?
21	by phase? What's it used for?	21	A. Yeah. You can think of it as six plus or
22	A. The -- it's just another way to modulate	22	minus 1's.
23	data. And it's a -- so what you do when you try	23	Q. Or six 1's or 0's?
24	to determine what modulation technique to use,	24	A. Yes. The way to think about it is that
	Page 31		Page 33
1	you have to consider how much band width it uses,	1	there are 2 to the 6 possibilities now.
2	how much power it uses, and how simple it is to	2	Q. Okay.
3	implement.	3	A. So there are 64 of those points in that
4	And you use those three measures to	4	two-dimensional space.
5	determine which modulation technique to use. So	5	Q. But those are binary bits?
6	for example, if you'd like to transmit higher bit	6	A. Yes. Binary bits. But the 1,0 , or plus
7	rates, you need to have more amplitudes and more	7	or minus 1 is just a mapping. I just call 0
8	phases. It's the only way to pack those -- those	8	minus 1.
9	points that we just talked about --	9	Q. And how does that relate back to the
10	Q. Uh-huh.	10	chips? Does that mean that one chip can have 6
11	A. -- into this two-dimensional space.	11	bits?
12	Right? So that's the advantage of modulating	12	A. No. No.
13	with multiple levels in both amplitude and phase.	13	Q. Okay. Then --
14	Phase gives you an advantage, in	14	A. So what you do is you take each of those
15	that the amplitude's not changing. So if you	15	bits, and you -- you spread them out. And so,
16	modulate the phase, the envelope of your signal	16	it's easier to think of CDMA, especially the
17	is constant. And so, it has that advantage. It	17	older system, it's the easiest way to think about
18	makes for simpler transmitter circuitry.	18	it as just transmitting binary data. And then
19	Q. Because it's able to determine --	19	what you do is you spread it. And what the
20	A. No. It's because if you have a constant	20	spreading does is it takes the pulse, and makes
21	envelope --	21	the pulse much narrower. The narrower pulses,
22	Q. Uh-huh.	22	they're the chips. And we call those plus or
23	A. -- you can put it through an amplifier	23	minus 1. So think of each bit being spread.
24	that's very non-linear and it doesn't bother it.	24	Q. So you're saying, then, it would be within

Merrill Corporation - Chicago

	Page 34		Page 36
1	1 pulse, you could have 6 chips?	1	line up. And when you add them up, the plus 1's
2	A. No, no. No, no.	2	multiply with the plus 1's.
3	Q. Then I'm --	3	Q. Uh-huh.
4	A. No, no. The chips and the number of bits	4	A. And the minus 1's add with the -- multiply
5	per symbol are not related.	5	with the minus 1's. And so, they give you all
6	Q. Okay. Can you explain --	6	1's. So you get -- it removes it.
7	A. They're independent of each other. That's	7	Q. Okay.
8	why I said, it's easier to think about this as	8	A. The other feature, which is not necessary,
9	just binary data being transmitted.	9	that's what my hesitation is here, okay, is that
10	Q. Okay.	10	in any of these sequences, they -- it's not
11	A. So I want to send a 1 or a 0 or a 1 or a	11	necessary that you have an equal number of 1's
12	minus 1. And that's all I want to send.	12	and minus 1's. It's a desired property, but it's
13	Q. Okay.	13	not true of all possible codes.
14	A. And then what I do is I take that 1 , that	14	Q. Is that -- and what's the reasoning for
15	1 pulse, it's a positive going pulse.	15	that, that you would want relatively equal
16	Q. Uh-huh.	16	numbers of plus 1's and minus 1's?
17	A. And I multiply it by another sequence,	17	A. So that when you have this -- you can show
18	right, which is plus or minus 1's, and that	18	that if you have an equal number of plus and
19	serves to take that one pulse and spread it in	19	minus 1's, if the code -- when you correlate the
20	band width, okay?	20	code with itself, that you'll get a very --
21	And so what I'll see is instead of	21	you'll get the highest possible peak when they
22	one pulse which is just positive going, I'll see	22	line up, and you'll get the smallest possible
23	multiple variations, and each one of those is a	23	value when they don't line up. But like I said,
24	width, whatever the spreading factor is I've	24	it's not required.
	Page 35		Page 37
1	divided by.	1	Q. Uh-huh.
2	Q. Uh-huh.	2	A. And here it's just the fact that the plus
3	A. And that we call a chip.	3	1 's and the minus 1 's will add to 0.
4	Q. Okay. The -- and in the last sentence of	4	Q. Okay. In the next paragraph, you say that
5	paragraph 13 you say that, "The binary chips	5	a sequence of chips, this is paragraph 14 --
6	cancel each other out when added together." Can	6	A. Yes.
7	you explain that?	7	Q. "A sequence of chips is often called a
8	A. So, the -- the purpose of the spreading is	8	symbol." Can you explain the difference between
9	to separate users, and then unspread, right? So	9	chips and symbols?
10	if the -- if you multiply all these chips	10	A. Usually, a symbol -- usually a symbol can
11	together, you multiply the sequences together,	11	be -- is a more general term. So it can -- it
12	and then you add them up.	12	can apply -- it can refer to a collection of
13	Q. When you say multiply sequences	13	bits. It can refer to a collection of chips. In
14	together --	14	OFDM, it can refer to a collection of symbols.
15	A. So you have this -- I said there is this	15	And so, in this -- in this case,
16	spreading signal.	16	because we're talking about chips, we often call
17	Q. Right.	17	a sequence of chips a symbol.
18	A. Which creates the chips, right? And so	18	Q. So can you give an example of what a
19	it's a series of plus or minus 1 's, which are a	19	sequence of chips would be, for -- I guess when
20	series of chips.	20	would a chip be essentially the same as a symbol,
21	Q. Uh-huh.	21	and when would there be multiple chips to be a
22	A. And when you multiply them together at	22	symbol?
23	the -- so you take what you transmitted with --	23	A. That's going to depend on the definition
24	at the receiver. Then -- and supposing they all	24	of the particular codes, and the modulation

	Page 38		Page 40
1	technique that you're using. So I could have a	1	particular values of those chips is what we call
2	code, I could have a code that is constructed of	2	a code. So that particular sequence is what we
3	8 chips.	3	call a code.
4	Q. Okay.	4	Q. Okay. The sequence of chips used to
5	A. So those 8 chips, I can call a code	5	spread the --
6	symbol. I can call them a modulation symbol, if	6	A. Yes. I mean we're calling it a code, but
7	I take those chips and multiply by the -- say a	7	it's really a code word in a collection of
8	bit. Or I can call -- I can refer to the code	8	values -- of sequences.
9	word, which is a collection of these individual	9	Q. And then how does that relate to symbols?
10	codes, I can call that a symbol.	10	A. So, it depends again on the definition of
11	Q. Okay. And if a chip and a symbol were --	11	symbols. So, symbol usually is referring to --
12	they can also essentially be the same?	12	symbols can refer to a collection of bits, a
13	A. It's -- it's possible.	13	collection of chips, a selection of another
14	Q. And are there -- what are the advantages	14	collection of symbols. So, it depends here on
15	or disadvantages of having them be the same or	15	the parameters that are used in the design.
16	having multiple chips per symbol?	16	Q. In this -- that simple case, one bit
17	A. The more standard is to have multiple	17	spread by a factor of 8 , so it's multiplied by a
18	chips per symbol. Because what you're trying to	18	sequence of 8 chips.
19	do is to spread -- you're trying to spread the	19	A. Right.
20	data in frequency, in band width.	20	Q. The -- and you're saying that's what
21	Q. Uh-huh. Do you know if CDMA uses multiple	21	becomes the code?
22	chips per symbol?	22	A. Yes. And we -- in that particular case,
23	A. Again, it's a definition of symbol. What	23	the one where I said 1 bit is spread by 8 , we
24	do you mean by symbol. There are -- if a bit	24	would probably call that 1 bit that's been spread
	Page 39		Page 41
1	comes in, that bit is multiplied, so one bit is	1	the symbol, in that particular case.
2	multiplied by multiple chips, by a sequence of	2	Q. So going back to when we talked about that
3	multiple chips. If we want to call that one	3	unique code that CDMA basically assigns to each
4	symbol -- okay. We can. But the collection of	4	cell phone, can you extrapolate this simple case
5	bits could be called a symbol.	5	to how that code would work, between the bit, the
6	Q. So the multiple chips could be one symbol	6	chips, and the symbol?
7	or it could -- each chip itself could be a	7	A. Depends on the code. But let's take the
8	symbol?	8	simple case. So you're -- you are assigned a --
9	A. Each chip is -- is typically not a symbol,	9	there are 2 to the 8 possibilities for 8 bits.
10	but it could be a symbol, yes.	10	Q. Right.
11	Q. Okay. In paragraph 15.	11	A. 8 chips.
12	A. 15. Yes.	12	Q. I understand.
13	Q. "Cellular telephone transmitters send data	13	A. Okay? Now, they are not all orthogonal.
14	over the CDMA network using a sequence of chips	14	Q. Uh-huh.
15	called codes"?	15	A. So you really wouldn't -- you wouldn't do
16	A. Yes.	16	it that way. But let's suppose we choose an
17	Q. So, is it -- a code is a sequence of	17	orthogonal code. So you're given a particular
18	chips. Is it -- how does a code relate to	18	8 -chip sequence. That is your code. And I am
19	symbols?	19	given a particular 8-chip sequence, and that's
20	A. So, for example, you -- what you might do	20	mine. Hopefully the two are orthogonal. Okay?
21	is you might have -- we'll take the simplest --	21	So all of my data, let's assume it's
22	simplest case, right. So if I take one bit and	22	just bits, plus or minus 1's, or 1's and 0's,
23	I'm going to spread it by a factor of 8, I'm	23	however you wanted to look at it. But plus or
24	multiplying it by a sequence of 8 chips. And the	24	minus 1's makes the math work out properly.

	Page 42		Page 44
1	Q. Right.		described in the '559 patent?
2	A. So I take my plus or minus 1's, I multiply	2	A. Something -- what? Which something are
3	them by this chip sequence, by my code. You do	3	you referring to? I'm --
4	the same thing. Right? I would call that	4	Q. The ability to recognize and
5	transmission of the -- that's the chip sequence,	5	differentiate --
6	I would call that the symbol. All right?	6	A. Yes.
7	And then at the receiver, at the	7	Q. The codes having properties that make them
8	base station, the base station would correlate --	8	easier for the base station to --
9	have two separate correlators. One for you, and	9	A. Yes. That's the target. At least that's
10	one for me. Assuming everything lined up	10	the motivation.
11	properly, you would get -- the base station would	11	Q. Okay. And can you identify where in the
12	get your data and my data.	12	'559 patent it relates to that?
13	Q. Uh-huh.	13	A. So, at the bottom of column 1, it talks
14	A. And in this particular case, we're	14	about -- that paragraph, the signal generated by
15	transmitting one bit each time.	15	the preamble generator.
16	Q. Okay. So, for each bit of my data, I am	16	Q. Uh-huh.
17	spreading it by multiplying it by the chip	17	A. Should be. So it has a list of things.
18	sequence?	18	Q. Uh-huh.
19	A. Yes.	19	A. Which has to do with timing, and
20	Q. Okay.	20	complexity, or problems when you have a carrier
21	A. And -- in the simplest case of CDMA.	21	frequency offset. And then the last allow the
22	Q. Right. And that is then -- so that chip	22	receiver to determine which transmission is about
23	sequence of 8 bits is only going to, on the	23	to begin -- transmitter is about to begin
24	receiving end, be able to resolve 1 bit of the	24	transmission.
	Page 43		Page 45
1	data I'm transmitting?	1	Q. Uh-huh.
2	A. That's correct.	2	A. So that last one is the one that allows it
3	Q. Okay. Also in paragraph 15 you say that	3	to separate the transmitters. And that's
4	"Codes have properties that make them easier for	4	what's -- that's what's in 15.
5	the base station to recognize and differentiate	5	Q. Okay. And the -- to determine which
6	when multiple cellular telephones are	6	transmitter is about to begin transmission --
7	transmitting at the same time." Can you explain	7	A. Yes.
8	what you mean by that?	8	Q. -- before you do that you need to send the
9	A. So, that's what I was saying about the 8	9	preamble sequence?
10	bits. So 2 to the 8 possibilities, but some of	10	A. Before you do what?
11	those, when you do this correlation at the	11	Q. Before you actually transmit to -- it says
12	receiver, will give you a large output, even	12	to allow the receiver to determine which
13	though it's not the appropriate signal. It's not	13	transmitter is about to begin transmission.
14	coming from the right user.	14	A. So, do you need to send the preamble
15	You -- if you can choose these codes	15	before somebody can start transmitting?
16	to be orthogonal under all conditions, under all	16	Q. Yes.
17	impairments, that would be the best possible	17	A. Yes.
18	thing you could do. And that means I can	18	Q. Okay. If a mobile station enters a cell
19	separate them at the receiver. So it's important	19	and it's not receiving a call or you're not
20	how you design these codes.	20	sending a text or not creating a call, is there
21	Q. Is that something that's discussed in the	21	any reason for it to generate a preamble
22	'559 patent?	22	sequence?
23	A. Can you repeat that?	23	A. No. You said there's no -- it doesn't
24	Q. I'm sorry. Is that something that is	24	want to transmit and it doesn't want to receive?

Merrill Corporation - Chicago
Q. Doesn't want to receive. Yes.
A. Yes. Okay. Make sure I'm answering the correct question.
Q. Good. Outside of CDMA, are there -- the other types of cellular systems, do they also use preamble sequences?
A. Yes. Preambles, some handshaking between the base station and the mobile station is required, to get all of the same things. To determine who is going to transmit, when, and all of the synchronization that's required.
Q. You had made a point before about the OFDM in relation to the TDMA, CDMA, and FDMA, something to the effect of that -- it was -- just give me a second -- as a modulation technique.
A. Yes.
Q. So as -- I guess what was -- what was not clear to me is the differences between those three, the TDMA, CDMA, and FDMA, and then there's a distinctive part of that system is its modulation technique?
A. That's right. Completely different.
Q. Okay. And what --
A. CDMA, TDMA, and FDMA are multiple access

Page 47

1
before, also, that OFDM is primarily implemented in 802.11?
A. Yes.
Q. So what is the -- in 802.11, you also have essentially a multiple access system?
A. Right. But the multiple access technique there is -- everything is -- is packet-based and there's no voice communication. So what you do in -- in that system, there's multiple versions of how it works.
Q. Uh-huh.
A. But one looks very much like a base station. It's called an access point. And the access point determines who can transmit when. And it basically -- there's this handshaking that goes on that says you transmit and no one else is allowed to. So it looks like -- it looks like a time division system. It's not TDMA. They're not given slots, but it's -- it's one at a time.

And there are still multiple frequency channels that can be used. But basically, access points have one frequency at a time.
techniques. So they -- they are the techniques that permit you to separate users. Okay? So that's all you really want to do. I want to separate users. I want to give you access to the channel at the same time I give someone else access to the channel.

What modulation technique I use, whether it's QPSK or 64 QAM, which are the two I mentioned before, or OFDM, doesn't matter.
Right? That -- what you generate is you basically generate -- think of them as pulses. After you do all the modulation, you generate pulses.
Q. Uh-huh.
A. And then those pulses are -- there's a multiple access technique that's on top of that. In CDMA it's a spreading. In TDMA, it's each person gets a chance. So -- that's how it works.

So they are distinct. Although there is an OFDM form called OFDM-A, which is a multiple access technique, and it's used -- it's been proposed in the uplink for WiMax. It hasn't been adopted.
Q. Okay. And at this point you had said
Q. So the -- with multiple frequency
channels, that allows more than one to transmit at the same time?
A. At the same time, right.
Q. But within each frequency channel you're basically saying, you know --
A. Yes. One user at a time.
Q. One user at a time.
A. Right. The newer versions that will come out in the next year or so allow for multiple users.
Q. And what would you say are the -- the biggest differences between this type of multi access system in wi-fi 802.11 versus the multi access in CDMA?

MR. HASLAM: I'm going to object to that question and instruct him not to answer. He's here to testify about his declaration. Anything else, he's been retained as an expert. We haven't disclosed him as a testifying expert on anything beyond what's in his dec -- his declaration, and I'd object to any questions in the line you're now going, on the grounds -based on 26(a)(4) and the fact that you haven't sought, nor attempted to lay any foundation of

	Page 50		Page 52
1	the fact that you need to get testimony from a	1	MR. WEINSTEIN: Sure.
2	non-testifying expert on matters beyond that	2	MR. HASLAM: I won't state it. But
3	which he's been designated to testify on.	3	I'm not changing my mind --
4	MR. WEINSTEIN: Well, I understand	4	MR. WEINSTEIN: Okay.
5	him to be a real true expert in OFDM, which focus	5	MR. HASLAM: -- based on any
6	on 802.11 , and he's providing this declaration in	6	arguments here today.
7	relation to CDMA, so I'd like to understand what	7	MR. WEINSTEIN: Okay. So you're
8	he understands is the differences between the	8	still instructing him not to answer?
9	two.	9	MR. HASLAM: Yes.
10	MR. HASLAM: Show me how the	10	MR. WEINSTEIN: Okay.
11	differences between the two relate to the '559	11	MR. HASLAM: But I am not
12	patent and the content and the substance of his	12	instructing him not to answer any questions you
13	declaration. The '559 patent says it's a method	13	want to ask him on why he believes he's qualified
14	for generating preamble sequences with a code	14	to render the opinions and statements set forth
15	division multiple access system. Every claim is	15	in his declaration related to CDMA.
16	limited to a CDMA system.	16	MR. WEINSTEIN: Okay.
17	I don't see any reference to the	17	BY MR. WEINSTEIN:
18	OFDM, or the relevance of the difference between	18	Q. As an expert in 802.11, what aspects of
19	OFDM and CDMA, and particularly 802.11, to this	19	being an expert in 802.11 enable you to testify
20	deposition.	20	as an expert to CDMA?
21	MR. WEINSTEIN: Again, my -- he's	21	A. So, I don't consider -- so you asked --
22	providing a declaration on the '559 patent which	22	you asked the question, you're an expert in
23	relates to CDMA.	23	802.11. That's not -- that's not correct.
24	MR. HASLAM: True.	24	Q. Okay.
	Page 51		Page 53
1	MR. WEINSTEIN: He is representing	1	A. All right? So if I -- when I -- when I
2	himself as an expert. But when you look at his	2	advertise myself --
3	background, everything is focusing on OFDM, which	3	Q. Uh-huh.
4	relates to 802.11.	4	A. -- I advertise myself as an expert in
5	And I'd like to understand, if he's	5	wireless communications.
6	an expert in this area, what also would make him	6	Q. Okay.
7	an expert in CDMA, and if he is truly an expert	7	A. I've worked in wireless communications
8	in CDMA, he would understand what the differences	8	systems for 30 years. I have not worked on CDMA
9	are between the two.	9	systems directly. But it doesn't mean that I
10	MR. HASLAM: I understand. My	10	don't understand the basics of CDMA. I've taught
11	objection and instruction still stands.	11	courses, I've taught short courses. I've taught
12	If you want to ask him what -- and	12	week-long short courses at industry locations.
13	you have, but if you want to pursue what makes	13	So, I -- and the fundamental
14	him feel he is qualified to respond to questions	14	principles of CDMA don't change. Now, the
15	on CDMA, you can go ahead and do it. And	15	details that have to do with the differences
16	depending on where those answers take you, you	16	between 802.11 access and CDMA access are -- I
17	can examine him.	17	might not know every detail. But it --
18	But you're taking him in an area	18	there's -- OFDM is proposed for cellular systems,
19	which he hasn't opined on in his declaration, and	19	also.
20	that's what we're here to do.	20	Q. Uh-huh.
21	MR. WEINSTEIN: But he's talked to	21	A. And I just happened to work for AT\&T,
22	how he --	22	which was a TDMA company.
23	MR. HASLAM: You know what, I'm	23	Q. Right. Can you -- you say you're not sure
24	just -- you can make your final statement.	24	what the difference is, but I mean are they

Merrill Corporation - Chicago

	Page 54		Page 56
1	profound differences?	1	A. Right? Then what I do is I take the code
2	MR. HASLAM: Between 802.11 access	2	that I know is yours, and I multiply it by your
3	and CDMA access?	3	signal bit -- you know, chip by chip. Right?
4	MR. WEINSTEIN: Right.	4	And if what I do is I multiply it chip by chip,
5	A. They're fundamentally different. And the	5	the 1's will multiply 1 's to give you a 1 . The
6	reason they're fundamentally different is one	6	minus 1 will multiply minus 1 to give you a 1.
7	system is trying to make money off of this. And	7	So now what happens is your bit now effectively
8	you can't afford to have users interfere with	8	is multiplied by a 1 straight across, and your
9	each other. Right?	9	bit comes back. Right?
10	So there's a fundamental difference.	10	If I don't get it right, the 1's and
11	There's a lot of safeguards. There's a base	11	the minus 1's will not multiply properly, and I
12	station that costs a million dollars that's	12	will get some subtraction, and I will get a lower
13	controlling the mobile units. And an access	13	signal. Ideally, because our signals are
14	point, most of us have access points in our home.	14	orthogonal, I will get a 0 . They will get a 0
15	Q. Sure.	15	from my signal when they're trying to detect
16	A. Okay? That cost about \$100. And there's	16	yours.
17	no money to be made. So there's a fundamental	17	Q. Right.
18	difference in the safeguards that prevent these	18	A. And that's what the bit -- the chip by
19	systems from interfering with each other. If	19	chip or point by point multiplication is.
20	you're using wi-fi -- which I guess we're all	20	Q. Okay. And that's getting more onto the
21	using in here.	21	following paragraphs, when you're talking about
22	Q. Yes.	22	correlation and orthogonal --
23	A. Okay. If you interfere with each other,	23	A. Yeah. It's the same example.
24	it doesn't matter. You're going to resend that	24	Q. All right. So we can just move on to, in
	Page 55		Page 57
1	packet. If, on the other hand, you keep dropping	1	paragraph 19 --
2	a call --	2	A. Uh-huh.
3	Q. That would be annoying.	3	Q. -- you say, "A base station can determine
4	A. -- you're going to -- they're going to	4	whether it has received a code from a cell phone
5	lose money.	5	by multiplying a received sequence by that code
6	Q. It happens anyway.	6	and calculating the sum of the resulting chips."
7	MR. HASLAM: Then you're on the AT\&T	7	Before we get into explaining that,
8	network.	8	when you say "that code," what is that in
9	A. And of course, they're trying to get as	9	reference to?
10	many users as possible on the same piece of	10	A. So, in the -- that -- "that code" refers
11	spectrum they have. That's how you make more	11	to the code that's in the line before it.
12	money.	12	Q. So it's received a code from a cell phone,
13	Q. Okay. Let's move on to, in paragraph 16,	13	and --
14	17, and 18, you talk about point by point	14	A. Right.
15	multiplication.	15	Q. -- the mobile station is -- the base
16	A. Yup.	16	station is using that same code?
17	Q. In what aspects does CDMA use point by	17	A. Yes.
18	point multiplication?	18	Q. Okay. And how does the -- can you
19	A. In -- so, in the example that I gave	19	explain, how did the cell phone know to use that
20	before, about you have an 8-chip code and I have	20	code in the first place?
21	an 8-chip code. So one way to -- let's assume	21	A. So, somehow this signal has been set up
22	that we have it completely lined up, the timing	22	ahead of time. That's one way you can do this.
23	is not a problem.	23	Another way is that this is what's happening
24	Q. Uh-huh.	24	after the preamble has already set up, made this

	Page 58		Page 60
1	connection. Right? So, for example, in the base	1	the -- somehow, this code is set up, and -- and
2	station, like I said, there's this handshaking	2	once that code is set up, it could be, like I
3	that goes on ahead of time. You are assigned the	3	said, you have the big table which we said is
4	code.	4	impractical, or when your phone first turns on,
5	In a -- it doesn't work this way,	5	that code is sent to your -- to your phone.
6	the real system doesn't work this way, but you	6	There's multiple ways, and I do not know the way
7	could be assigned a code permanently, right, so	7	that it's done in the system that is -- as
8	your phone could have one -- much like you have a	8	currently deployed.
9	serial number, that is your code. And the	9	Q. It --
10	base -- all the base -- there's a big huge table,	10	A. But they all have the same end goal.
11	much like telephone numbers. There's a big huge	11	Q. Is that explained in -- in the 25.213
12	table that would have this code in it. That's	12	standard, or do you know?
13	the simplest way. There's no -- there's no	13	A. What is --
14	handshaking required.	14	Q. The -- the 3GPP.
15	Q. That would be very intensive in trying to	5	A. No. What are you saying is --
16	correlate, then, if you --	16	Q. The --
17	A. Yeah. It could be. Right. Right.	17	A. We referred to a lot of things here.
18	Q. If you have --	18	Q. The manner in which the codes that are
19	A. Depends how many you need, how many --	19	used by the mobile station to communicate with
20	Q. Right.	20	the base station.
21	A. It's not done that way, right?	21	A. I don't remember.
22	Q. Yeah.	22	Q. Okay. The next line, if the chap --
23	A. So you know if you're in a particular base	23	sorry. "If the chips add up to a large positive
24	station, they give you the code that applies to	24	or negative number, then the base station knows
	Page 59		age 61
1	that base station, and that's what the	1	that the transmitter used that code."
2	handshaking which -- in CDMA, you need to be --	2	A. Yes.
3	sync up fairly well, especially in the -- in the	3	Q. All right. Explain what that means.
4	uplink, because there's some -- and the downlink,	4	A. So you do the correlation. Let's say it's
5	it's always synced up, but in the uplink it's	5	point by point.
6	very important.	6	Q. Okay. Explain -- before we -- what do you
7	Q. Uh-huh.	7	mean by correlation, then?
8	A. And so, you try to sync it up the best you	8	A. So, okay. So let's suppose that the
9	can. So once you -- once you have that code,	9	signal comes in, and what we'd like to do is to
10	then the cell -- the base station is using that	10	see how alike this received code is with the code
11	same code to determine that it's you.	11	that I expect from other transmitters. The base
12	Q. Okay.	12	station expects.
13	A. And that's the example, essentially the	13	So, what it does, this process of
14	example that's in 17 and 18.	14	trying to find how alike they are is called
15	Q. Okay. So, in general, then, the base	15	correlation.
16	station, whether before the preamble or after, is	16	Q. Uh-huh.
17	going to send something -- some information to	17	A. Right? And so, if they're very alike,
18	the mobile station saying use this particular	18	they're very correlated. Ideally, the
19	code, or pick from one of these codes?	19	correlation is 1. It's perfect.
20	A. Yes. Usually in the preamble.	20	Q. Uh-huh.
21	Q. In the preamble?	21	A. And if we're lucky, they're -- the ones
22	A. Right. This is --	22	that are not from the desired transmitter are
23	Q. So before the --	23	very much unalike, so they're 0 . The correlation
24	A. This is somehow -- so what will happen is	24	is 0 .

	Page 62		Page 64
1	And so, what you do is you take	1	differently. If the number of chips is 100 ,
2	the -- the signal that's coming in, assume that	2	then -- and you did the -- the correlation --
3	it's synced up in time, and you multiply it point	3	A. Right. It was perfect.
4	by point with, let's say, code number -- user	4	Q. Then perfect correlation would give you a
5	number 1, and code for user number 2. Let's say	5	value of 100?
6	you only think there are two users in here.	6	A. Yes. In this way.
7	Q. Uh-huh.	7	Q. Right.
8	A. And in code number 1, if they all line up,	8	A. We were doing the correlation here.
9	you'll get this 1 value out, positive 1. And	9	Q. You also made a comment before about
10	that will mean that it's -- it's from transmitter	10	synchronized. Can you explain why -- why that's
11	1. Right?	11	important, or how that helps to improve
12	Hopefully, if they're orthogonal	12	correlation?
13	codes and they're all lined up, what you get from	13	A. Oh. There are certain codes that -- you
14	code number 2, when you correlate it with code	14	would like orthogonal codes.
15	number 1, is 0. And that means it's coming from	15	Q. Right.
16	code 1.	16	A. That would be the best you can possibly
17	If you correlate it with code 2 ,	17	hope for. And the problem is, the signal is
18	then -- and code 2 is transmitting, you should	18	coming from different distances to the base
19	get a 1 for code 2 and a 0 when you correlate it	19	station.
20	with code 1 .	20	Q. Right.
21	Q. And when you say 1 versus 0 , that's doing	21	A. So they arrive at different times. And
22	the point by point multiplication and then adding	22	many codes, many particular codes are orthogonal,
23	the terms, or --	23	but if they're off in time a little bit, if the
24	A. Yes. Point by point, and then add them.	24	time is -- is not exactly in sync, then the
	Page 63		Page 65
1	That's what correlation is. It's a -- I guess	1	correlation will be high between code 1 and code
2	some people call it inner product, but it's the	2	2. Even though they are supposedly orthogonal.
3	sum of C1 times C2.	3	They are orthogonal, but only if they're
4	Q. Okay. And that's just what the last line	4	perfectly lined up.
5	says, this process of multiplying and adding the	5	Q. And when --
6	resulting chips is called correlation.	6	A. So chip 1 is chip 1. Chip 2 is chip 2.
7	A. Right.	7	Q. Right.
8	Q. And you said that's sometimes called the	8	A. Okay? If chip 1 and chip 2 are being
9	inner product?	9	multiplied together, that code might have a large
10	A. Yes.	10	correlation. So we call that the cross
11	Q. Okay. And then it's -- it's perfectly	11	correlation.
12	correlated if, when you -- you do the dot	12	Q. The cross correlation is when there's a
13	product -- every single product before you do the	13	misalignment?
14	summation is a 1 ?	14	A. No. The cross correlation is when you
15	A. Yeah. It doesn't have to be 1. I mean	15	have multiple codes for different users and you
16	you can -- it depends on how you're designing	16	correlate them. Auto correlation is when code 1
17	this, right? But it would be the sum of the	17	is being correlated with itself --
18	chips.	18	Q. Right.
19	Q. Right. Right.	19	A. -- over different time delays.
20	A. Normally what you would like to do is you	20	Q. Okay. And the problem is that if -- when
21	normalize it, because you don't like big numbers.	21	they're aligned, you can get -- they can be
22	So you normalize that to 1 by dividing by the	22	perfectly orthogonal --
23	number of chips.	23	A. Yes.
24	Q. Uh-huh. So, but it -- let me put it	24	Q. But when they're misaligned --

	Page 66		Page 68
1	A. They can be badly not orthogonal.	1	statistical thing. This is digital
2	Q. Okay. So, in paragraph 20 we talk about	2	communications. It's not always perfect.
3	the perfect correlation, and then the 0	3	Q. Okay. So you do some processing. Does
4	correlation in paragraph 21, that's, again, to	4	that -- does that mean in general that the longer
5	give the example, if I have a code of 100 chips,	5	the code, the more likely I'm going to accurately
6	and I do the correlation and my sum is 0 , that	6	make that determination?
7	would be a 0 correlation?	7	A. The longer the code the more accurately --
8	A. Yes.	8	it depends on the impairment. So it --
9	Q. So what if I do this correlation and I --	9	Q. So it's --
10	and I have 100 chips in the code, and I don't get	10	A. -- it depends on what's causing the
11	100, and I don't get 0. How do I know if it's	11	problem. If what's causing the problem is the
12	orthogonal or not?	12	delay between the different transmitters to the
13	A. You're -- okay. Let's back up a little	13	base stations, so the time at which they're
14	bit, because I don't understand your question.	14	arriving, if that is the biggest problem, you can
15	Q. If --	15	solve that by using a very long code.
16	A. Orthogonal means 0 correlation.	16	Q. And how does it do that?
17	Q. Right.	17	A. The very long code?
18	A. So you can't use the word orthogonal	18	Q. Yes.
19	unless it's 0 correlation.	19	A. So -- without writing equations, but when
20	Q. Okay. Let me ask it differently, then.	20	you look at the -- the shifts in time, the
21	How do I know -- I assume the base station	21	off -- the peaks are -- are big. We just said it
22	doesn't always get this perfect synchronization.	22	could be 100.
23	A. That's right.	23	Q. Right.
24	Q. And if it doesn't get the perfect	24	A. But the real question is what happens
	Page 67		Page 69
1	synchronization, it's not -- and it does this	1	off -- when they're misaligned.
2	correlation, it's not always going to get a	2	Q. Right.
3	number that matches the number of chips or a 0 ?	3	A. Right? So if it's 100 when they're
4	A. That's correct.	4	aligned, right, and what is it when they're
5	Q. So how does it decide whether or not it's	5	misaligned? So if, when they're misaligned, it's
6	intended for that base station?	6	85, we're in big trouble, right? Because I can't
7	A. It draws a line, and if you're above the	7	tell the difference. Right?
8	line, it says yes.	8	Q. Uh-huh.
9	Q. A threshold?	9	A. But if I make it so that the code is
10	A. If it's below the line it says no.	10	really long, okay, so not one of these codes like
11	It's -- so for example, if I'm sending a 1 or a	11	Hadamard codes, but a really, really long code,
12	0 , a plus 1 or a minus 1, okay, what I do is I	12	and everybody uses this long code, this
13	simply -- this is how a detector actually works.	13	off-alignment value is -- is one over the length
14	I simply draw a line at 0 . If I'm above 0 , I say	14	of the code.
15	it's a plus 1. If I'm below 0, I say it's a	15	So the bigger I make the code, the
16	minus 1.	16	smaller that interference term becomes. Right?
17	Sometimes there's noise, and there's	17	So, you know, and that's what's -- that's why a
18	enough noise that it makes a plus 1 look like	18	long code can help with the delay. You just make
19	it's below 0. So you make an error.	19	it -- you -- that number's really small, and by
20	Q. Uh-huh.	20	making the code really long, all the delays will
21	A. The same thing occurs here. Right? So	21	come in within the length of the code.
22	what they -- what you'd like to do is you'd like	22	Q. So --
23	to do some processing that gives you the best	23	A. So --
24	chance of making a correct decision. But it's a	24	Q. So the delay becomes just a smaller and

	Page 70		Page 72
1	smaller part of the whole code?	1	Q. Uh-huh.
2	A. Yes.	2	A. At least that's what this is saying. But
3	Q. Thanks.	3	I think there's a -- I think there's a line
4	MR. WEINSTEIN: Yeah.	4	that's missing.
5	THE VIDEOGRAPHER: Going off the	5	Q. If that line were magically to appear,
6	record at approximately 12:17 p.m.	6	what would it have said?
7	(Brief recess held)	7	A. It would go right after $2,0,2,0$, right,
8	THE VIDEOGRAPHER: We're back on the	8	and it should have the sum of the combined
9	record at 12:31 p.m.	9	signals, or -- see, what I want -- what we want
10	BY MR. WEINSTEIN:	10	to do is we want to correlate the combined signal
11	Q. Okay. Let's turn to paragraph 23, on page	11	with code 1 and code 2. Right? So think of it
12	5 of your declaration. And in the beginning, you	12	as a one -- a point for point multiplication.
13	talk about an example of two codes, codes 1 and	13	Q. Uh-huh.
14	2 , and those having the values that were given to	14	A. So if I take $2,0,2,0$, and I multiply it
15	it in paragraph 17. And it says that when they	15	by code number 1 , you know, what do I get? I get
16	are simultaneously transmitted, the resulting	16	1 minus 1,1 minus 1 , right? Times $2,0,2,0$.
17	signal is the sum of code 1 and code 2. Can you	17	Q. Right. And when you add it together --
18	explain what you mean by the sum of them? Why	18	A. Right. And when you add it together you
19	it's the sum?	19	get a big number. So what -- in the two separate
20	A. I mean think about what happens when	20	paths, because you would multiply by two separate
21	you -- when two users transmit at the same time.	21	codes, what you're going to get is this big
2	Their signal adds in the air, essentially. Okay?	22	correlation for both of them. So you are able to
23	So what -- I think what we're	23	separate them.
24	saying -- and all this is saying, right, is that	24	Q. Uh-huh.
	Page 71		Page 73
1	if you take -- if A transmits code 1 and B	1	A. That's what it would come down to.
2	transmits code 2 at the same time, then in the	2	Q. Okay. And so --
3	air they're going to add. And at the base	3	A. This has to do -- this 23 refers to 22,
4	station, what you receive is the sum of these	4	right? Where you're saying you're sending them
5	two. Okay?	5	at the same time.
6	Q. Okay.	6	Q. Right.
7	A. But I'm not -- I'm not sure -- I'm trying	7	A. And to show how you don't -- you're able
8	to remember exactly what it meant here, so you	8	to separate, or at least you're able to know that
9	got to give me a second.	9	they're both there. But that one shouldn't say
10	Q. Sure.	10	the sum of the combined signal. It -- it -- it's
11	A. Okay. So I'm -- I'm a little confused as	11	okay to say combined signal, but there's no
12	to what it meant, what I meant here. Because of	12	correlation, right?
13	the next line.	13	Q. What -- I'm sorry. I don't understand
14	Q. "And correlates the same combined signal	14	what you mean by that.
15	of code 2"? That line?	15	A. So after 2, 0, 2, 0 in brackets in 23,
16	A. Yeah. So maybe I can --	16	there's a line that looks like it's missing,
17	Q. If you want to take a minute, that's fine.	17	which says that the base station correlates with
18	A. No, that's okay. Let me -- yeah. Let me	18	code 1 , and gets the 4 , just like the next line,
19	just go back and review. So code 1 is $1,1,1$,	19	the base station correlates the same combined
20	1 , and code $2-$ no. 1 minus 1,1 minus 1 . And	20	signal with code 2.
21	code 2 is $1,1,1,1$.	21	Q. I see.
22	Q. Right.	22	A. Which also yields. There could be a line
23	A. So then what we're doing is we're saying	23	just like that, instead of the sum of the
24	these two codes sort of add in the air.	24	combined is $2,0,2,0$.

Leonard Cimini, Ph.D. July 13, 2011

	Page 74		Page 76
1	Q. That's why it says this also yields?	1	another one here, a big number, says yes, I have
2	A. Yes.	2	something from number -- from mobile B , and
3	Q. Okay.	3	that's what this means.
4	A. I don't know what happened there. Okay.	4	Now it doesn't necessarily have to
5	Q. And I know this is an incredibly	5	be a positive. It can be a negative, depending
6	simplified example, but this tells you that it's	6	on how the code's constructed. But it would have
7	correlated, and therefore, the signal from each	7	to be a big number, compared to 0 , in this
8	cell phone, A and B, was intended for this	8	application. In this example, I'm sorry.
9	particular base station.	9	Q. So when you say positive correlation,
10	A. Right.	10	you're -- this goes back to that -- that
11	Q. So it's not -- it's discovered now that	11	threshold argument?
12	it's intended for it. How does it actually	12	A. No, not necessarily.
13	resolve the original, or the data that's being	13	Q. No?
14	transmitted from that?	14	A. This just means that when -- the words
15	A. Well, you know, the code is -- this is	15	positive correlation here simply mean that when
16	just looking at the correlation, to say, yes, I	16	it's -- when we do this correlation, we get a
17	have signal.	17	positive, a big positive number. You know, in
18	Q. Uh-huh.	18	reality, there's noise added to this, so these
19	A. From this one.	19	numbers can be bigger or smaller.
20	Q. Right.	20	Q. Uh-huh.
21	A. Right? But then it needs to -- the codes	21	A. Or it can even drop below 0. Okay.
22	are specific. So remember when I said you used	22	Q. And when you say get -- gets a big
23	that code to actually un -- despread the signal.	23	positive, that's an indication that the signal is
24	Q. Right.	24	intended for that particular base station?
	Page 75		Page 77
1	A. That's what -- in the despreading, you	1	A. Yes.
2	would get just the individual bits that were left	2	Q. And the evaluation of what makes it a big
3	for code 1. And then the same thing with code 2.	3	positive, that -- that does not relate to the
4	All you're doing here is in the very -- in the	4	threshold? I mean how -- how do you decide
5	process of synchronization, there are multiple	5	the --
6	things you need to do. Is there any signal out	6	A. That would relate to the threshold. In
7	there that's trying to get to the base station.	7	this particular case there's no noise.
8	Q. Uh-huh.	8	Q. Right.
9	A. When does it start, and then what is that	9	A. So 0 is the threshold. And as long as
10	information. So this is just saying that yes, I	10	it's positive -- but 4 is the biggest number you
11	have some signal. This is just an example,	11	could get here, also.
12	showing that yes, I have signal from -- I guess	12	Q. Right.
13	telephone A and telephone B.	13	A. So this is all perfect. Everything came
14	Q. Okay. And the next line is "Each time the	4	out perfectly. If -- if the threshold --
15	base station comes up with a positive	15	Q. So it's perfectly synchronized and no
16	correlation, it has confirmed that it has	16	noise?
17	received a transmission from a single cellular	17	A. This is assuming everything is perfect.
18	telephone."	8	Q. So even if it was -- if everything is
19	A. Right. So is, in -- in the output, right,	19	perfect, even if you had 100 chips, if you got a
20	it correlated with a code 1. So think of that as	20	value of 1, that would still be an indication
21	you know this path in the circuitry.	21	that it was intended for that base station?
22	Q. Right.	22	A. In this particular case, yeah.
23	A. It came out with a big number. It says	23	Q. Yes. In that idealized perfect situation.
24	okay, I have something from mobile A. It gets	24	A. Right. But the problem is that if

Merrill Corporation - Chicago

	Page 78		Page 80
1	they're -- in order to get a 1 you have to have a	1	not used in the uplink, because it's almost
2	process that's going to create only a 1 rather	2	impossible to get them to be perfectly aligned.
3	than the $0--$ the 100 . And that would mean that	3	Q. Uh-huh.
4	it's either not synchronized, or there's some	4	A. Right. And so, that's an example of when
5	other impairment. We're assuming no impairments	5	this wouldn't work. But it's -- it's all --
6	here.	6	almost always related to the -- the distance
7	Q. Right.	7	delay, because that's the bigger number, usually.
8	A. So your -- your question only applies to	8	Q. Okay. And then paragraph 25 gets into the
9	the case that this doesn't apply to.	9	types of codes that can be used when you have
10	Q. Okay. So 24, then, gets into the -- the	10	misalignment issues?
11	complicating factors?	11	A. Yes.
12	A. Only the -- the misalignment.	12	Q. And can you explain -- well, I guess two
13	Q. Right. Can you just explain generally	13	things: What does it mean to have imperfect
14	what you mean by misalignment.	14	orthogonality?
15	A. So that's, again, for example	15	A. So if I just take a code, any code, and we
16	Q. Okay.	16	can go back to our example of the 8 chips. So we
17	A. -- the signals are coming from different	17	have 2 to the 8 possibilities. Some of those
18	distances to the base station. And because	18	codes would be not orthogonal to other codes in
19	they're coming at different distances, they	19	that set. All right? So if you were to do this
20	arrive at different times. And so, they are not	20	correlation, you wouldn't get 0 for any two
21	perfectly time aligned.	21	codes, you would get some possibly significant
22	Q. Uh-huh.	22	number. Okay?
23	A. They're not synchronized. And that's what	23	So, what you do is when it's
24	I mean by misaligned.	24	misaligned, it's -- you can't use the orthogonal
	Page 79		Page 81
1	Q. Okay. And then you give an example of	1	codes, say like the Hadamard codes, so you need
2	orthogonal codes that are -- they're only	2	to use something else. So you tend to use some
3	orthogonal if they're aligned perfectly.	3	other pseudorandom kind of code to -- to serve
4	A. Yes.	4	this purpose.
5	Q. So that means if you have to deal with	5	Q. Okay. And how does it --
6	misalignment, you cannot use those codes?	6	A. But they are not perfectly orthogonal.
7	A. I don't know how to answer exactly that	7	They don't give 0 correlation -- 0 cross
8	question. Your question was can you use these	8	correlation. That's what not perfectly
9	codes if they're misaligned.	9	orthogonal means.
10	Q. Well, I know physically you can use them.	10	Q. Okay. So, how -- how, then, can you --
11	I guess maybe what is the reason why you don't	11	well, two questions: It's not giving you the
12	use them?	12	answer about whether there's a perfect
13	A. Okay. So that's -- that's better. So,	13	orthogonality or zero orthogonality, so there's
14	for example, orthogonal -- Hadamard codes are --	14	an imperfect orthogonality, but how does it --
15	have very poor cross correlation properties when	15	how do these codes that have imperfect
16	they're not aligned. So they all need to be	16	orthogonality address the misalignment issue?
17	lined up, and then they're perfectly orthogonal	17	How does it -- you can't -- if you use Hadamard
18	and they're wonderful codes.	18	codes because of their poor cross correlation,
19	Q. Uh-huh.	19	you don't want to use that when there's
20	A. So they're used in the -- for example, in	20	misalignment. Instead you use these imperfect
21	the 2G cellular, CDMA, but only in the downlink.	21	orthogonal codes, generally from a pseudorandom
22	Because the base station sends every one of those	22	code. How does it overcome this misalignment
23	messages, they all arrive at exactly the same	23	problem?
24	time, so they're all perfectly aligned. They're	24	A. Okay. So the pseudo -- the orthogonal

	Page 82		Page 84
1	codes are such that if you are misaligned, it's	1	A. Yes. Assuming we're -- we're transmitting
2	the structure of the code, essentially, that if	2	these 1 -- plus or minus 1.
3	they're misaligned, the cross correlation could	3	Q. Right.
4	be very large.	4	A. You know, binary bits and things.
5	Q. Right.	5	Q. Right. I guess my question goes to it's
6	A. A standard pseudorandom sequence has the	6	not set up where if it's below a certain
7	property that the -- sometimes the cross	7	threshold, then we say it's not correlated. If
8	correlation could be good, sometimes the cross	8	it's above some higher threshold, it is
9	correlation could be bad. Let's take as an	9	correlated. If it's somewhere in between, we
10	example a code that has 24 chips. Actually, I	10	don't know.
11	shouldn't say 24, because I don't know what that	11	A. Okay. So there are some systems, depends
12	is. Let's make it 20 chips.	12	on what you do. I don't believe that this is the
13	Q. Okay.	13	way the second generation CDMA system would have
14	A. So 2 to the 20 is 1 -- roughly 1 million.	14	worked, works. I believe it's just a threshold,
15	Q. Right.	15	a simple threshold. But in -- in other systems,
16	A. So there are 1 million possible sequences.	16	sometime there's a gray area, and that gray area
17	So, you don't need 1 million sequences in a cell.	17	is the width of -- you know, how big it is.
18	Q. Uh-huh.	18	Q. Uh-huh.
19	A. And what you know is that some of those	19	A. You know, depends on what you're trying to
20	codes have really good cross correlation	20	achieve. Because you can always send, for
21	properties. Out of that million, there might be	21	example, you can always send this information
22	50 of them that when I correlate them, even when	22	again. And that would make it more certain the
23	I shift it, I get pretty decent properties,	23	second time.
24	right?	24	Q. Okay. Can you explain what a Gold code
	Page 83		age 85
1	That's the motivation for using	1	is.
2	other codes that are not orthogonal, is that I	2	A. A Gold code is -- a Gold code is just
3	can have this large set, and I choose those out	3	another kind of a -- of a spreading code, or
4	of that set that have good cross correlation	4	pseudorandom code. And it's generated by using
5	properties.	5	two real, true pseudorandom sequences, what are
6	There's a -- there are theoretical	6	called maximal length sequences. You pick two of
7	ways of bounding how much cross correlation you	7	those. There's a process, which I don't know
8	have, when you have a -- an offset. A time	8	enough details to -- to give you those, that
9	offset.	9	generates the Gold sequences.
10	Q. And this then gets more specifically into	10	What I do know is the Gold sequences
11	the idea of a threshold? That it's --	11	have -- the Gold codes have a bound on this cross
12	A. Yes. But it -- you know, in digital	12	correlation. So that's what makes them good.
13	communications in general there's a threshold.	13	And it's called -- it -- it satisfies what's
14	Q. Right.	14	called the Welsh bound. And that's this cross
15	A. There's an optimum threshold.	15	correlation. But it doesn't use all of the
16	Q. Right.	16	you don't use all of the codes that are possible.
17	A. And you determine what that is, and that's	17	Q. How do you end up selecting which ones?
18	how you design your system.	18	A. Somehow you -- I don't know exactly, all
19	Q. And this type of threshold, is it	19	right, the details.
20	generally just a -- you know, say for example in	20	Q. Uh-huh.
21	a CDMA system, is it going to be just a draw the	21	A. But you choose those, I think, you choose
22	line, if it's below this number, we're going to	22	those that give the low cross correlation. And
23	say it's not correlated, if it's above this	23	there's a procedure for doing that. These were
24	number it is correlated?	24	invented 40 years ago or so, so -- more than 40

	Page 86		Page 88
1	probably.	1	the small amount of interference?
2	Q. Probably had no idea how it would be used.	2	A. That's that cross correlation that I was
3	Interesting.	3	talk about.
4	A. Well, spread spectrum was a very	4	Q. Okay. Let's move on to paragraph 26.
5	well-known technique in the military. Before it	5	A. Uh-huh.
6	became commercial.	6	Q. "The '559 patent purports to describe the
7	Q. How -- how long can a Gold code be?	7	generation of the preamble that can be detected
8	A. Any length.	8	by the base station and can separate each
9	Q. Any length. So millions? Many millions?	9	cellular telephone's transmission so that each
10	A. Could be.	10	cellular telephone is uniquely identified."
11	Q. And it is correct to say it would	11	In the last sentence you say,
12	be -- the length of the Gold code is measured in	12	"Generally speaking, the first of the two codes,
13	chips?	13	called the outer code, is used to perform signal
14	A. Yes. Assuming we're using it to spread	14	separation, and the second, called the inner
15	the -- the initial pulse.	15	code, is used to uniquely identify the handset."
16	Q. Okay. So then if I'm -- if I'm using a	16	First, with respect to the outer
17	Gold code to, as the code that I've assigned to	17	code, what do you mean that it's used to perform
18	two different mobile stations, and they are	18	signal separation?
19	using, say, different Gold codes, or they're	19	A. That's to determine which base station --
20	using different parts of the same Gold code --	20	you know, which base station you're talking to.
21	A. Uh-huh.	21	Q. So this is -- when you mean signal
22	Q. -- when the -- even if they're not	22	separation, you mean that the base station knows
23	synchronized, the base station can receive them.	23	it's supposed to receive it or it's --
24	Does it -- it knows what segment of the code, or	24	A. No. This doesn't have anything to do with
	Page 87		Page 89
1	it knows which Gold code each one is using, it	1	whether it's supposed to receive it or not. It
2	does the correlation, and then when it receives	2	just has a code that's -- that identifies the --
3	the one that's been assigned to mobile station 1,	3	that particular base station. So it knows it's
4	it does a correlation, it's going to give some	4	for -- you're a base station.
5	relatively high value?	5	Q. Right.
6	A. That's the -- that's the concept.	6	A. You know this is for you, as opposed to
7	Q. Right. And it gives a value that would	7	for another base station.
8	exceed its threshold?	8	Q. Right. That's what I intended to say, is
9	A. Right.	9	that --
10	Q. But when it -- if you then applied it	10	A. Oh, okay.
11	also -- if you applied that same code to the	11	Q. So the base station knows when it's
12	signal received from mobile station 2, it would	12	receiving a signal from a mobile station --
13	give you a relatively low value?	13	A. That's for itself.
14	A. That's the hope, yes. So the hope is that	14	Q. -- it knows it's for the base station?
15	you design this -- you've chosen your Gold codes	15	A. Yes. Yes.
16	such that you achieve the cross correlation that	16	Q. To put it again, so to tell the base
17	you want.	17	station that the signal is indeed intended for
18	Q. Okay. On the top of page 6, still in	18	it?
19	paragraph 25, you say, "Consequently, the	19	A. Okay.
20	transmissions from different handsets using Gold	20	Q. Okay. And the inner code to uniquely
21	codes would cause some small amount of	21	identify, what's the -- can you explain that?
22	interference" --	22	A. Each mobile station then would have its
23	A. Right.	23	own -- each mobile station within that base
24	Q. -- "to each other." What do you mean by	24	station's cell area would have its own

Merrill Corporation - Chicago

	Page 90		Page 92
1	identifying code.	1	on the first line, "The outer code is described
2	Q. And in choosing that code, is that based	2	as known to the base station, and is shared by
3	on information it receives from the base station?	3	all transmitters." So, are you saying the same
4	The inner code.	4	thing, that shared by all transmitters means that
5	A. The inner code is chosen based on -- this	5	they're using a common outer code, and it's the
6	again gets back to that other question we talked	6	same sequence of chips?
7	about. Is the -- the other issue. Are these	7	A. Yes. That's what it says in the -- that's
8	codes assigned in some way to mobile stations, or	8	what it says in the patent.
9	are they given to the mobile stations when they	9	Q. And it says this is --
10	make this handshaking.	10	A. This is $3: 45$. It says the outer code is
11	Q. Right. And that's just something you're	11	preferably common for all transmitters.
12	not sure about?	12	Q. Okay. And preferably common means it
13	A. Something I'm not sure about.	13	needs to be common?
14	Q. Okay. So, I know you're unsure, but	14	A. No. I understand what preferably means.
15	it's -- we were saying it's possible, then, that	15	Q. What?
16	the base station sends information to tell a	16	A. I understand what preferably means. But
17	mobile station use this particular outer code, or	17	in order for -- in order for all of the benefits
18	one of these particular outer codes, and then	18	to be achieved, such as simplicity, and -- and
19	also use one of these particular inner codes?	19	complexity, you would want this to be common for
20	A. So wait. That's different from the	20	all of the -- so it's preferably here, but in --
21	question you just asked me a minute ago. A	21	in a non-patent sense, it's also what you would
22	minute ago you asked about the inner code.	22	prefer; that it be common to all the
23	Q. Yes.	23	transmitters.
24	A. Right. So the inner code is specific for	24	Q. Be common to all the transmitters. Okay.
	Page 91		Page 93
1	each mobile.	1	Are there problems in distinguishing mobile
2	Q. Right.	2	stations? If they all use the same outer code,
3	A. So in that case, somehow the mobile must	3	do you end up having any problems in trying to
4	know what its code is. So, it either is embedded	4	distinguish outer stations from each other?
5	in the mobile unit itself, or it's sent by the	5	A. Wait. You said outer stations.
6	base station.	6	Q. Let me -- let me back up. Let me rephrase
7	The outer code is something	7	that.
8	different. The outer code is something which is	8	A. No. It's just the word you used. You
9	common to everybody in the cell. So the base	9	said distinguish outer stations from each other.
10	station, you know, is -- is broadcasting this all	10	You meant mobile?
11	the time, for example.	11	Q. I'm sorry -- mobile stations, yeah.
12	Q. Uh-huh.	12	A. So, the outer code is used to -- to
13	A. And everybody's just listening to what it	13	determine which base station, right --
14	is, and then it feeds it back if it hears it.	14	Q. Uh-huh.
15	Right? It's -- it's like an identifier --	15	A. -- you're communicating with. But the
16	Q. Right.	16	mobile stations then are going to have their own
17	A. -- of that base station.	17	code that distinguishes them from other mobile
18	Q. And when you say common, that means that	18	users.
19	every mobile station in that cell is going to use	19	Q. Right. Let me bring up a different point.
20	the exact same sequence of chips?	20	Can you explain to me what a collision is, in --
21	A. For the outer code.	21	in a cellular system.
22	Q. Yes.	22	A. So you mean a packet-based system then?
23	A. Yes.	23	Or you mean just a random access system? Which
24	Q. Okay. And this -- going to paragraph 27	24	part of it are you talking about? So there's the

	Page 94		Page 96
1	part where you send data.	1	A. Under your conditions.
2	Q. Right.	2	Q. Yes.
3	A. In a cellular system. And there's a part	3	A. Where they've chosen randomly.
4	where you're trying to get access to the system.	4	Q. Yes.
5	So you're talking about the access part?	5	A. Yes.
6	Q. Yes.	6	Q. So it can happen where they have the same
7	A. Okay. So in the access part, if you	7	outer -- well, according to this they all share
8	transmit the same time I transmit -- sorry. If	8	the same outer code, so they all have the same
9	you transmit the same time that I transmit --	9	outer code. But it's possible that they will
10	Q. Right.	10	randomly choose the same inner code?
11	A. -- right, and let's say we're both exactly	11	A. Yes. That's possible.
12	the same distance from the base station. Our	12	Q. And if that's the case, then when -- if
13	signals are going to reach the base station at	13	both mobile stations were to transmit at the same
14	the same time on the same frequency. And those	14	time at the same distance, then you would get a
15	two signals will pretty much obliterate each	15	collision?
16	other. Let's assume --	16	A. That's correct.
17	Q. Uh-huh.	17	Q. So if I was to increase the number of
18	A. -- that's true, okay? So that's why we	18	outer codes --
19	put a code on top of them, where we separate them	19	A. Wait, wait.
20	in time, or we separate them in frequency, to	20	Q. So instead of having a common outer code
21	avoid these collisions. Now we typically don't	21	for all of them, I was to, say, instead have two
22	talk about collisions on the data transmission.	22	or five or 50 outer codes that were available for
23	Q. Right.	23	my mobile station -- or for my base station, if
24	A. Because it's only on the access part.	24	that's the case, then I am -- by increasing the
	Page 95		Page 97
1	Q. And on the data part, it's because you've	1	number of outer codes, I am decreasing the chance
2	now set up maybe a different --	2	of a collision. Is that correct?
3	A. You've already set it up where there	3	A. You are. But you're increasing the
4	should be no collisions.	4	complexity.
5	Q. Right. Because --	5	Q. Sure. Sure. But if I decrease the
6	A. It can still happen, but it should not.	6	chances of collisions, it also has a benefit,
7	Q. But in general, at that point you can set	7	yes?
8	up something to make it more clearly unique	8	A. But you can -- you can fix that problem by
9	between --	9	not having mobiles use the same inner code.
10	A. That's correct.	10	Q. Right. If -- if I use a Hadamard code for
11	Q. -- mobile stations? So, if -- if there's	11	my inner code, am I limited in the number of
12	a closed -- and this is going to bring in the	12	different inner codes I can use?
13	inner codes. If there's a closed set of inner	13	A. So let me make sure I -- so we're going to
14	codes that are available to the mobile stations	14	have a Hadamard code.
15	that they can use, and the particular inner code	15	Q. Yes.
16	that's used is chosen randomly, among whatever	16	A. And you didn't tell me the length. The
17	closed set is available, if I'm using the same	17	length. But you're going to have some length?
18	outer code and I have this closed set of inner	18	Q. Yes.
19	codes and I'm using one of them, there's this	19	A. Yes. You're limited in the number.
20	chance that I'm going to use the -- that two	20	Q. Okay. So again, the -- if I have that
21	mobile stations will use the same outer code and	21	limited number, then the -- one way to improve
22	the same inner code?	22	the chance of not having a collision is to
23	A. That's -- that can happen.	23	increase the number of outer codes that I use?
24	Q. Okay. And if that happens --	24	A. If you're limited to a small number of the

	Page 98		Page 100
1	Hadamard codes, then you could improve the -- the	1	Q. And if a handset uses a different outer
2	probability, reduce the probability of collision	2	code than the one used by the base station
3	by increasing the number of outer codes.	3	receiver, it will not be able to decode
4	Q. Okay. And in general, if -- if a base	4	transmissions from that handset.
5	station has available a certain set of outer	5	A. Correct.
6	codes that mobile stations can use, as I decrease	6	Q. And that -- can you explain that line a
7	the number of outer codes in that set, if I start	7	bit more? That it's not able to decode, or that
8	with, say, 100, and I keep on decreasing it, as I	8	it's --
9	continue to decrease, the circuitry that I need	9	A. Well, okay. So here's the -- here's the
10	in the base station will simplify?	10	explanation. If I have different outer codes,
11	A. As you -- oh. So let me make sure I	11	and if I-- if I -- someone's using a different
12	understood, because your question went around a	12	outer code for a particular base station, then
13	little bit. So, as you decrease the number of	13	when it does the correlation, it will get a low
14	outer, possible outer codes --	14	value. So it will know it's not for that
15	Q. Uh-huh.	15	particular base station.
16	A. -- that a base station can use.	16	Q. Uh-huh. Right.
17	Q. Right.	17	A. If you are doing something similar, and
18	A. The circuitry in the base station will get	18	you're doing the actual data transmission, right,
19	simpler?	19	and the codes didn't match, you wouldn't be able
20	Q. Yes.	20	to decode it. So what that means is that I -- if
21	A. Yes.	21	I'm -- if I had the correct one, I would decode
22	Q. So for example, if I have one base station	22	my -- I would be able to detect my -- if I had
23	that was assigned 100 codes as the outer -- as	23	the one that's for me, and I know it's for me,
24	possible outer codes, and another one that was	24	then all of the others, I don't decode those, but
	Page 99		Page 101
1	assigned five outer codes, as possible outer	1	they become zero -- you know, like zero
2	codes, the one that only has five can use simpler	2	background noise to me. That's what this is
3	circuitry to do the correlation process?	3	intended to mean.
4	A. Yes.	4	Q. Okay.
5	Q. And to make it the simplest, the simplest	5	A. Flipped it the other way, it means I only
6	way to do it is just to have one single outer	6	can detect the one that's using the correct outer
7	code that all mobile stations use?	7	code.
8	A. Yes. All mobile stations within	8	Q. Okay. That makes sense.
9	the -- the base station's area.	9	A. That makes a better -- maybe a better way
10	Q. And that would make the circuitry the	10	to say this.
11	simplest possible to do the correlation with the	11	Q. Right. It -- I think that sentence just
12	outer code?	12	kind of takes the next step leap, without --
13	A. To do the correlation with the outer code,	13	A. It's okay.
14	right.	14	Q. -- making it clear that it's --
15	Q. Right.	15	A. I understand.
16	A. Because you need one correlator, versus	16	Q. It states it's not correlating it.
17	many.	17	Because it's not correlating it, it can't decode
18	Q. Right. okay. In the -- the next line of	18	it correctly.
19	paragraph 27, "A base station then uses the outer	19	A. Right.
20	code to recognize preamble sequences that are	20	Q. The next line, "The '559 patent suggests
21	intended for it." That means that it's doing the	21	to use Gold and Kasami codes to form the outer
22	correlation of its assigned outer code or outer	22	code." How does the -- well, start with the
23	codes?	23	example of using a common one, where each --
24	A. Uh-huh. Yes.	24	where there's only one outer code for the base

	Page 102		Page 104
1	station.	1	A. But I wouldn't do it that way. Okay?
2	A. Uh-huh.	2	Q. What do you mean?
3	Q. How does -- or let me -- what is in the	3	A. I wouldn't do it that way, because
4	mobile station that enables it to generate the	4	memory's cheap.
5	same code as all the other mobile stations in	5	Q. Right.
6	the -- in that cell?	6	A. I would put it all in memory, and it would
7	A. I can't tell you exactly how it's	7	be an index, this is what you use. But I don't
8	happening in 3GPP. But what I would do with a	8	know how it's done.
9	Gold code, for example, or a Kasami, because	9	Q. So each particular Gold code, then, has
10	these come from actual shift -- actual length	10	you know, for its first chip, would be, you know,
11	shift register sequences.	11	it can go on, as we said for millions and
12	So you use the shift register to	12	millions of chips. When the information that's
13	generate it. You tell the -- the only	13	provided to -- or for the mobile station to be
14	information you really need to transmit is how	14	able to select the proper portion of the Gold
15	long the code is and -- or how many shift	15	code, because it's obviously not transmitting
16	register -- shift registers you need. And	16	millions of chips -- and we'll just give an easy
17	there's also usually sort of a generator that	17	example. It's doing 100 chips. Essentially, you
18	tells them how to make the connections. And that	18	need to provide information to it to know like
19	would generate the Gold code in one transmission.	19	kind of the -- the offset of where to start the
20	Q. What do you mean by a generator to make	20	generation of the --
21	the connections?	21	A. I assume so. Yes.
22	A. It -- a shift register.	22	Q. Okay. Okay. In paragraph 28 , you say
23	Q. Uh-huh.	23	that it's -- "The outer code is further described
24	A. Okay? So a shift register has a bunch of	24	as periodic with period K chips, meaning that it
	Page 103		Page 105
1	boxes, which are essentially delays.	1	consists of a series of repeating blocks of K
2	Q. Right.	2	chips, where each block has the same sequence of
3	A. And then there are connections, there are	3	chips." Can you explain what you mean by
4	feed back connections, and feed forward	4	"periodic."
5	connections.	5	A. Periodic simply means it repeats in time.
6	Q. Uh-huh.	6	Q. And the period corresponds to just the --
7	A. And it tells them how to make these	7	A. How long it takes till it repeats.
8	connections. Which ones are connected. So if	8	Q. Yes. And here you reference the -- again,
9	there's four boxes, do you add the output of 1	9	column 3.
10	and 2 , or do you add the output of 1 and 3 or do	10	A. Yeah.
11	you add the output of 1,2 , and 3? Those	11	Q. And the preferred embodiment is depicted
12	connections are part of what's called the	12	in figure 6. Outer code 603 is periodic with
13	generator equation for this. And that's what	13	period K chips.
14	generates the code.	14	A. Yes.
15	This is true for all pseudorandom	15	Q. And why do you want to make it periodic?
16	sequences. There's a standard diagram, and these	16	A. Why do I want to make it periodic?
17	connections are specified. So if you simply	17	Q. Well, what is -- why -- what's the point
18	specify the connections, and how many of these	18	of making it periodic?
19	shift registers there are, you can generate any	19	A. Well, the -- are you asking me, or do you
20	pseudorandom sequence. Any M sequence.	20	want me to tell you what's in the --
21	And then from the M sequence, you	21	Q. Well, both. The first one -- why -- in
22	can generate the Gold sequences, by choosing them	22	the '559 patent, what is the purpose of making it
23	appropriately.	23	periodic?
24	Q. Uh-huh. Okay.	24	A. There's several reasons for making it

Merrill Corporation - Chicago

	Page 106		Page 108
1	periodic, I think.	1	engineer.
2	Q. According to the '559 patent?	2	Q. Right.
3	A. According to the '559 patent. Okay. And	3	A. I'm not a lawyer. And so, when I read
4	I believe it's -- I talked about this in the --	4	these things, I read them as if I were the
5	29, but I'm not so sure. Right? So if I have	5	engineer, thinking what he's doing, and try to
6	a -- if I have a small sequence like this, okay,	6	put myself in the same position.
7	then the correlator is easier to build, because	7	Q. Uh-huh.
8	it's just a few taps.	8	A. In my -- and in my opinion, the engineer
9	The other reasons why the '559 wants	9	wanted this to be periodic, made it clear in the
10	to do it, I'm -- besides simplicity, I'm not so	10	second -- in the second claim, and then talks
11	sure that I understand.	11	about it as a preferred embodiment.
12	Q. Besides the -- this periodic aspect, and	12	So I, as an engineer, I read it that
13	using a single outer code, is there anything in	13	way. And then, with the emphasis on making the
14	the '559 patent that provides a means for using	14	circuitry simpler, I focus on this thing being
15	simple circuitry in the base station?	15	periodic, on the outer code being periodic.
16	A. That's kind of an open-ended question.	16	Q. What other ways do you think you could
17	So, I'm trying to figure out how to -- how to	17	make the circuitry simpler in the base station,
18	answer it.	18	when it comes to detecting preambles?
19	Q. Well, before we get to that, is there --	19	A. So that's another open-ended --
20	is there anything in the '559 patent that	20	Q. Yes.
21	specifically says, because we use -- you can use	21	A. -- question. Right. If you make --
22	a periodic outer code, it makes the circuitry	22	Q. For example, if I made the -- the preamble
23	simpler, or simple?	23	sequence shorter.
24	A. No. But it's -- to me, and so now you're	24	A. You can make the preamble sequence
	Page 107		Page 109
1	asking me to just comment on the patent.	1	shorter. But it has deficiencies if you make the
2	Q. Okay.	2	preamble sequence shorter, right? You want the
3	A. When I read the patent, I assume that he's	3	preamble sequence long enough to be able to get
4	doing this, that he wants to do this, to achieve	4	these cross correlations low enough, and be able
5	the goals that he's set out for himself. Which	5	to handle the delays that might happen.
6	is simplicity, and -- and the others. Okay.	6	And, but at the same time, you want
7	And then I look at that, I look at	7	to make it, you know, short enough so that
8	the figure 6 and say, well, okay, he's using a	8	it's -- it's simpler, right?
9	short thing that's repeated.	9	Q. Right. I understand. Okay. In -- in the
10	Q. Right.	10	'559, there's -- they use the term "chips" and
11	A. And it seems that that -- the motivation	11	they use the term "symbols," on the -- the side
12	is to make the complexity of the -- the circuitry	12	of generating the preamble. Can you explain what
13	simpler.	13	the difference is.
14	Q. Right. Although it -- it does refer to	14	A. It's -- so again, are you asking me to
15	that as a preferred embodiment. And -- I know	15	answer this question -- I'm a little confused.
16	you're the inventor of many patents, so I'm sure	16	Q. So, if you're reading the ' 559 patent.
17	you've seen that terminology before.	17	A. Right. Okay.
18	A. Well, I -- I understand that, but based on	18	Q. And there's --
19	his -- some of his -- the comment, and some of	19	A. So here --
20	the discussion in the -- in the specification --	20	Q. For example, on column 3, it says "Both
21	Q. Uh-huh.	21	codes are preferably of length and chips where N
22	A. -- even though it's -- it's a preferred	22	is the total number of symbols in the preamble."
23	embodiment, it's repeated several times. So it	23	Is there a difference there between chips and
24	seems that it's -- you know, what I'm -- I'm an	24	symbols?

Merrill Corporation - Chicago
A. Not in that definition.
Q. Okay. And then, for example, it also says in that periodic part, and this is column 3, line 42 to 43 , "outer code is periodic with period K chips." But then in column -- I'm sorry, in column 5 , in claim 2 , it says the -- and this is line 11, it says, "The period --" I'm sorry, are you -- "The period of the outer code comprises K symbols."

So in column 3 we say the period is K chips. In claim 2 we say the period comprises K symbols. So, in your view, is that the same thing again? We're talking about the same thing?
A. So, let me -- let me backtrack so I make sure I understand what you're saying. In column 3 he says both codes are of length N chips where N is the total number of symbols.
Q. Right.
A. Mathematically, that means one chip is one symbol. Right? There's no other way to interpret that line. Right? Then he talks about the outer code being periodic with K chips, right?
Q. Uh-huh.

Page 111
A. Which is consistent with figure 6 .
Q. Right.
A. Okay? Because he has whatever that is, 8 chips in one of -- in -- 8 chips in -- in the code. Okay.

And then here he talks about outer code comprises K symbols. Here it's not so clear to me, with claim 2, as to what he means by K symbols. They have this -- they have this picture where he's calling these symbols, but later on he calls something else symbols.
Q. And where does he do that later on?
A. Column 5 -- 4. I'm sorry. Column 4, line 40, 41. I don't know. Somewhere in there, he talks about these M symbols. So there -- a chip isn't a symbol, but the 8 chips are a symbol.
Q. And that's -- that's happening at the base station, yes?
A. Symbols are symbols. Chips are chips.
Q. No. I'm asking what, in column 4 --
A. It's happening at the base station. But I'm not sure I understand what the difference is. So, I -- I find the confusion, for me, between column 3 and column 4, in a -- yeah.
Q. Okay. Going back again to the commonality of the outer code. It is possible that I could say, okay, every mobile station, you're only going to use this one Gold code.
A. Yes.
Q. But, it's possible that I could say within that Gold code, which can be millions of chips long --
A. Yes.
Q. -- I want you to use, you know, mobile station 1, I want you to use this segment. Mobile station 2, I want you to use this different segment.
A. Yes.
Q. So they're using the same code, but they're using just different segments within that code?
A. That's possible.
Q. In that possibility, when you talk about having a common code, the common code -- they're still using the same Gold code, they're just using different segments?
A. It's not -- it's not my general understanding of what common code would mean.

Page 113

That would mean that everyone uses the same sequence in the base station. And then the other base stations, for example, might use the Gold code, just shifted. A different segment of it. But it's -- my understanding is it would all be the same sequence. That's my understanding of the term --
Q. Okay.
A. -- common code.
Q. Okay. And when it comes to the common code in the patent, or the -- that it's preferably common for all transmitters, it's certainly, you know, the system -- you can certainly generate preamble sequences where the -- the mobile stations are not using the same outer code? It's certainly --
A. In what he calls the -- his preferred embodiment, I don't believe that's true. I don't believe that's what he -- what was intended as the preferred embodiment.
Q. As the preferred embodiment.
A. Yes.
Q. Right. But it -- there's certainly no language here saying that unless they use a

	Page 114		Page 116
1	common code, you -- you wouldn't be able -- the	1	Q. But if they intended it to be periodic,
2	system wouldn't work, or it doesn't comply with	2	wouldn't it have been in the independent claim?
3	my description?	3	If they -- let me just give you a hypothetical.
4	A. No. But it is -- it's consistent with his	4	I have an invention, and it has three features,
5	goal	5	okay? And I say, okay, when I go to my
6	Q. Sure.	6	independent claim, I say it has feature 1 and it
7	A. -- of simple circuitry.	7	has feature 2. And then I say in dependent claim
8	Q. Okay. And that's the same point with	8	2 , plus feature 3. Are you saying that to
9	the -- the periodic part.	9	generate my invention, I have to do feature 3?
10	A. Uh-huh.	10	A. No, but I don't read this the same way.
11	Q. That it's certainly preferred. It does --	11	Q. And why don't you read it the same way?
12	if you use periodic, it can make it, the	12	A. I -- because when I -- when I read claim
13	circuitry, more simple, but there's no	13	2 , it seems like you're referring to claim 1, and
14	requirement that it be actually periodic?	14	it has to be K symbol -- periodic. I -- and like
15	A. Again, the periodic would make it simpler.	15	I said, I'm not -- I'm not an attorney. I don't
16	Q. Right.	16	know, you know, every detail of patent law. But
17	A. And it seems like the only -- based on the	17	I read claim 2 to be very specifically referring
18	way this is described, it's the only way you	18	to the outer code in claim 1.
19	could generate these, you would generate these	19	Q. Okay. And if -- if I interpret the outer
20	codes. Seems like the intention of the inventor.	20	code in claim 1 as necessarily having a period,
21	Q. Okay. But it's not --	21	what in claim 2 changes that? What makes it
22	A. But not --	22	different? What is -- what is it about claim 2
23	Q. It's not the only way?	23	that's adding something?
24	A. Correct.	24	A. Well, again, I'm not a patent attorney,
	Page 115		Page 117
1	Q. It's the preferred way, but it's not the	1	and I'm not claiming that -- that this is well
2	only way you could generate it?	2	written. Okay?
3	A. Right, but no other way --	3	Q. I didn't draft it, either, so I'm not
4	MR. HASLAM: Object. Objection.	4	claiming that, as well.
5	When you say not the only way, do you mean	5	A. So I'm not -- I'm not claiming that. I'm
6	generally, or with respect to the '559 patent?	6	just telling you, when I read it, my
7	Q. If I was reading the '559 patent, would it	7	interpretation.
8	be understood that you could generate the outer	8	Q. But at -- just getting back to my
9	code that's not periodic?	9	question, then. If --
10	A. My reading of the patent, okay, would say	10	A. There's no difference.
11	no.	11	Q. There's no difference. Okay. Earlier
12	Q. That one -- you would read this and say I	12	today, you said in preparation for today's
13	cannot generate an outer code unless it's	13	deposition that you did refer to the -- to the
14	periodic?	14	3GPP standard?
15	A. Based on the -- on claim 2.	15	A. Working group documents.
16	Q. On claim 2. But that's not -- that's not	16	Q. Yes.
17	an independent claim. That's --	7	A. That you referred to.
18	A. It seems very specific, though. So at --	18	Q. I'm going to make -- this is exhibit
19	you asked me my reading of the '559.	19	number 5?
20	Q. Right.	20	THE VIDEOGRAPHER: 5.
21	A. And I'm not an attorney.	21	MR. WEINSTEIN: 5?
22	Q. Right.	22	(Cimini Exhibit 5 marked for
23	A. As an engineer, I would say this inventor	23	identification)
24	intended for this outer code to be periodic.	24	A. Hopefully it's one I've looked at.

Merrill Corporation - Chicago

	Page 118		Page 120
1	Q. That's what I was going to ask you.	1	the witness not to answer on the grounds that
2	MR. WEINSTEIN: Do you need a copy?	2	he's not here today to testify about issues of
3	A. I've looked at this one.	3	infringement, or comparing the claims of the '559
4	Q. So you have looked at that one?	4	with the standard. And as to that, it's beyond
5	A. Yes.	5	the scope of Rule 26. He's a non-testifying
6	MR. HASLAM: Is this the one you	6	expert as to those issues.
7	looked at yesterday -- Sunday?	7	MR. WEINSTEIN: Well, he's just
8	THE WITNESS: I said -- I said	8	testified that he looked at it to figure out what
9	last -- yesterday and Sunday.	9	the differences and similarities are to
10	Q. Yes.	10	understand how to prepare for today's deposition.
11	A. Yes.	11	So how -- that's informing on how he's testifying
12	Q. So you looked at it both days?	12	today on this deposition. I want to understand
13	A. Yes.	13	what he determined from that.
14	Q. Did you look at section 4.3.3, starting on	14	MR. HASLAM: You can try to lay a
15	page 15?	15	better foundation, but as of now, he basically
16	A. Yes.	16	has told -- he -- I'm not going to characterize
17	Q. Can you tell me what PRACH is?	17	his testimony. I don't think he said that what
18	A. That's the --	18	he did relates to understanding the construction
19	MR. HASLAM: I'm going to object to	19	of the '559, to the extent that that's what his
20	the question. You haven't laid a foundation that	20	declaration states.
21	his review of this formed either the basis of his	21	BY MR. WEINSTEIN:
22	declaration or the basis of his preparation today	22	Q. So what did you compare in the '559 to the
23	to testify about his declaration.	23	standard?
24	Q. What did you look at in the -- in the	24	MR. HASLAM: I got the same
	Page 119		Page 121
1	standard? What did you reference in preparation	1	objection -- same instruction. He -- there's no
2	for today's deposition?	2	dispute he said he compared it. There's no
3	A. Section 4.3.3.	3	comparison in his declaration, and you haven't
4	Q. And what did you look at specifically in	4	laid a foundation as to how that comparison
5	4.3.3?	5	relates to the declaration, which is the only
6	A. The preamble code construction.	6	thing he's here to testify about.
7	Q. And what did looking at the preamble code	7	He is a -- he's been designated as
8	construction tell you in preparation for today?	8	an expert on things beyond the declaration. He
9	A. Assuming that this is the 3GPP standard,	9	is a consulting expert, as to which you're not
10	it told me how they do the preamble.	10	entitled to discovery absent a showing, which you
11	Q. Okay. And how did that help you prepare	11	haven't made.
12	for today?	12	BY MR. WEINSTEIN:
13	A. It's -- trying to understand this code	13	Q. Okay. So how did you use this, then? How
14	construction, and the code construction that's in	14	did the review of the standard inform you on
15	the '559 patent.	15	understanding the '559 patent?
16	Q. And so, you -- were you trying to	16	A. Okay. So to -- I think I should reiterate
17	understand how they were the same or different?	17	sort of what Bob's saying, right? So, I did not
18	A. Trying to understand what's in the '559,	18	use it to write this declaration.
19	and then trying to understand here, in the -- in	19	Q. But you did use it for preparing for
20	the 3GPP, to see what the -- what the	20	today's deposition?
21	similarities and differences were.	21	A. I used it to get a general understanding
22	Q. Okay. And what did you find to be the	22	of the -- the case in general. But not for this
23	similarities and differences?	23	deposition -- not for this declaration, and not
24	MR. HASLAM: I'm going to instruct	24	for questions that I expected in this deposition.

	Page 122		Page 124
1	Q. And in your preparation for understanding	1	Q. Yes.
2	what -- how CDMA works, had you previously looked	2	A. Did I use anything else, other than
3	at this standard to understand how preambles are	3	textbooks and this document (indicates). No.
4	generated?	4	Q. Okay.
5	A. Yes, I did.	5	A. Okay? Did I look at lots of other
6	Q. And so, when we talked before about, you	6	material related to this case? Yes.
7	know, what you had done to prepare the	7	Q. In preparing the declaration?
8	declaration and understanding CDMA, at that	8	A. No.
9	point, had you already looked at the -- this	9	Q. Just for the deposition? Preparing for
10	standard, in understanding --	10	the --
11	A. Yes.	11	A. No. No. In our -- in our discussions
12	Q. Okay. So, going back to that, in addition	12	about this case. This declaration is very
13	to the '559 patent and its prosecution history,	13	specific.
14	you did look at this standard to have an	14	Q. Right. Okay. And in column 4 of the
15	understanding of --	15	patent --
16	A. So that's -- that's not -- that's not the	16	A. Yes.
17	question you asked. So the question says, in	17	Q. -- the first line is that the -- it
18	preparation of this declaration.	18	provides means of generating preamble sequences
19	Q. Right. That's what I'm saying.	19	that can be detected with simple circuitry. It
20	A. Right. In this -- in preparing this	20	then provides --
21	declaration, you don't need anything but basic,	21	A. Which -- sorry. Which line?
22	rudimentary understanding of CDMA, and a little	22	Q. I'm sorry. This is column 4, line --
23	bit out of the '559. So you don't need anything	23	starting at line 51.
24	else. So, in -- you know --	24	A. 51.
	Page 123		Page 125
1	Q. Okay. I'm --	1	Q. Uh-huh.
2	A. It's not necessary to list everything I've	2	A. Yes.
3	ever learned about CDMA, or I've read about it --	3	Q. So, it -- you can generate the preamble
4	Q. I thought you might --	4	sequences that can be detected with simple
5	A. -- for this declaration.	5	circuitry, and then it lists a few other things
6	Q. I thought in my question that I had said	6	that are advantageous.
7	that in understanding CDMA for preparation of the	7	Can you explain -- it says "In
8	declaration. Maybe I didn't say it clear enough.	8	addition, for example, the first one, when the
9	But I --	9	transmitter and receiver oscillator frequencies
10	A. Right. But that still doesn't require you	10	are not exactly equal, the preamble received at
11	to understand this (indicates).	11	the base station appears very different from or
12	Q. I'm not saying it does.	12	highly uncorrelated with the other preambles in
13	A. Right.	13	the set."
14	Q. I'm asking did you -- had you looked at	14	Can you explain how the --
15	the standard, and in preparing the declaration,	15	A. Yes. So, when the frequency is offset,
16	to explain CDMA and explain how it applies -- how	16	what happens is the phase, which is the integral
17	it applies to preamble sequences --	17	of the frequency, will be that frequency offset
18	A. No. That's not the question you asked.	18	times T. So, it will -- the phase will be
9	Q. Okay. Well, then, I'm asking it now.	19	growing. So, and since it can only be between 0
20	A. Okay.	20	and 2 pi, it will actually be rotating --
21	Q. You're saying that no, you did not look at	21	Q. Right.
22	the standard then?	22	A. -- around the circle. Okay? So as this
3	A. In -- you asked the question properly. In	3	frequency offset exists, the -- the
24	preparation, in preparing this declaration --	24	constellation, if you will, or just the plus or

	Page 126		Page 128
1	minus 1 --	1	the preamble is generated that does that, or is
2	Q. Okay.	2	it just this algorithm after it's received?
3	A. -- will rotate. So when you do this	3	A. It helps that you have the -- so, if I can
4	correlation, you get something very different	4	use the preferred embodiment in figure 6 as an
5	than you might get if you -- everybody was	5	example.
6	perfectly synchronized.	6	Q. Just this time.
7	And the longer the sequence, the	7	A. Okay.
8	worse this problem will be. Because the rotation	8	Q. All right.
9	goes along longer, the phase change.	9	A. By having the inner code as being these
10	Q. Uh-huh.	10	orthogonal code words --
11	A. That's the first part.	11	Q. Uh-huh.
12	Q. Okay.	12	A. -- what you can do is you can correlate
13	A. See what the -- well, that's -- that's it.	13	with each one. And then you can do this
14	That's all it says, right? The next part says	14	difference between one symbol and the next, if I
15	"The preambles also allow the difference to be	15	call the whole block a symbol. A symbol and the
16	calculated in a straightforward manner."	16	next. And that allows, gives you an estimate of
17	Q. And just going back to this frequency	17	what the phase difference is between those two
18	offset, then, how does it -- you've just	18	symbols. So it tells you how much the phase has
19	explained, I guess, the -- what it means to have	19	changed from one symbol to the next.
20	this frequency offset. How is the preamble	20	And then what you do is you add them
21	that's generated according to the patent make it	21	all up, which gives you a benefit against noise,
22	appear that that preamble is different from and	22	and that gives you your estimate. All right. So
23	highly uncorrelated --	23	the algorithm -- it's not dependent on this, but
24	A. Well, what's most important is the highly	24	it's -- it's helped somewhat by this.
	Page 127		Page 129
1	uncorrelated part.	1	Q. Okay.
2	Q. Right.	2	A. Their specific algorithm. There are many
3	A. Right? So, if -- if I take a signal and	3	ways of doing frequency offset correction.
4	it has 0 phase, and I get -- I take exactly the	4	Q. And the -- the last -- that allows the
5	same chip sequence, but now I shift it by 90	5	difference between the transmitter and receiver
6	degrees. When -- when I correlate those two, I	6	oscillator frequencies to be calculated in a
7	get 0 , when I should be getting perfect	7	straightforward matter?
8	correlation.	8	A. Right. That's the algorithm that I just
9	Q. Right.	9	talked about.
10	A. Because it's the same signal, it gets 0 ,	10	Q. Okay. Then I guess I'm not understanding
11	because the inner product -- you know, is cosign	11	how does the preamble generated according to the
12	a 90 , so you get 0 .	12	patent make it highly uncorrelated, when you have
13	Q. Right.	13	this differences between frequencies?
14	A. And that's the problem, right? And you	14	A. If you don't correct for the frequency,
15	have no idea what this phase is. It's totally	15	then you have a problem.
16	random, right, because it's just whipping around.	16	Q. Right.
17	And -- and the -- as a matter of fact, the	17	A. Right? So you have to correct for it. So
18	oscillators even move, so that the difference is	18	this -- this preamble structure, and the
19	changing. And you need a way of correcting for	19	algorithm that they -- they made, that he
20	that.	20	invented to go along with it --
21	Q. Okay.	21	Q. Uh-huh.
22	A. And -- and they have an algorithm for	22	A. -- allow you to fix this. And then
23	doing that.	23	everything lines up properly. Right? But if you
24	Q. Is there anything specific in the way that	24	don't do something to correct it, then you're

Merrill Corporation - Chicago

	Page 130		Page 132
1	going to have this problem.	1	Q. Right. So if it's bounded, you know where
2	Q. So the combination of that special	2	to set the threshold?
3	algorithm and the structure --	3	A. That's right. It can never be bigger than
4	A. Yeah, but it's --	4	this. So -- and it's a function of how long the
5	Q. It addresses both of these last two --	5	code is. So you can specify, say this is where I
6	A. Right. But the algorithm -- the algorithm	6	want my threshold to be, or I want my performance
7	is -- not matched, but it's -- it's designed for	7	to be. You can set the length based on that.
8	that structure. It's designed for having these M	8	There's simple formulas for that.
9	signals. They don't have to even be orthogonal.	9	Q. Okay.
10	They can just be any M signals.	10	MR. WEINSTEIN: Well, thank you. I
11	Q. Uh-huh. I've given the hypothetical	11	have no further questions.
12	before that, you know, all the mobile stations	12	MR. HASLAM: I have just a couple.
13	are using the same Gold sequence, but using	13	CROSS-EXAMINATION
14	different segments within the Gold sequence.	14	BY MR. HASLAM:
15	If I'm using the different segments,	15	Q. I believe you testified, in response to
16	and actually, this is also addressing the point	16	some questions about the relationship, if any,
17	that you said in general, you would want to use	17	between symbols and chips, and did I understand
18	just specific ones that have better orthogonal --	18	you to say that in -- in the typical use of the
19	or cross correlation qualities.	19	word "symbol," it relates to multiple chips?
20	A. Yes. Yes.	20	A. Yes. I think I said that.
21	Q. So if I was just to use a segment, and	21	Q. Right. And is there anything in the '559
22	then it was another segment that was offset by	22	which is consistent with the use of symbols to
23	just one chip, so let me -- an example of 100	23	mean multiple chips?
24	chips. So, I use chips 1 to 100 .	24	A. I think I mentioned that, too, in column
	Page 131		Page 133
1	A. Uh-huh.	1	4, when he talks about this frequency offset
2	Q. And the next segment, I use chips 2 to	2	correction technique, he refers to, you know,
3	101.	3	orthogonal -- orthogonal signals, and the
4	A. Yeah.	4	orthogonal -- the correlated output as symbols.
5	Q. In that case, is there any predictable way	5	And these -- in the figure 6, for example, were
6	to know that that's going to create good cross	6	multiple chips. So those symbols are now
7	correlation or not?	7	multiple chips.
8	A. There's a -- there's a way to construct	8	Q. You were asked some questions about claim
9	the Gold codes, which I don't know. But I think	9	2 , and in particular, the portion of the claim 2
10	it's -- it might even -- I don't think it's	10	that states "wherein the period of the outer code
11	specified in here. It might be.	11	comprises K symbols, wherein K is a positive
12	But there's a structure -- there's	12	integer." If "symbols" as used there means
13	an algorithm for doing this construction. And	13	multiple chips, and if I use the preferred
14	part of that algorithm will create codes, will	14	embodiment, a symbol could comprise 8 chips,
15	only essentially pick those code words which have	15	correct?
16	a bounded cross correlation. I'm choosing my	16	A. 8. You said 8, right?
17	words to be precise about this.	17	Q. 8, yes.
18	Q. Okay.	18	A. Yes. 8.
19	A. Because that's what it is. It's not a low	19	Q. Right. Now, if I have a symbol which
20	cross correlation. It's a -- a bounded. It just	20	comprises 8 chips, but I have an outer code which
21	means it can never be bigger than that. That's	21	is 9 chips long, would the 9 chips be an integer
22	what the Gold code construction does. But I	22	number of symbols in that system?
23	couldn't tell you, you know, how or why it does	23	A. Under the way you just defined it, no.
24	this.	24	Q. So --

	Page 134			Page 136
1	A. Let me -- can I repeat it? Because I'm		State of Delaware)	
2	not sure I understood.	2	New Castle County)	
3	Q. Yes.	3		
4	A. So, a symbol is defined as 8 chips.	4 5	CERTIFICATE OF REPORTER I, Julianne LaBadia, Registered Diplomate	
5	Q. Yes.		Reporter and Notary Public, do hereby certify that	
6	A. And you want the outer code to be 9 chips	6	there came before me on July 13, 2011, the deponent herein, LEONARD CIMINI, PH.D., who was duly sworn by	
7	long.	7	me and thereafter examined by counsel for the	
8	Q. Repeating at 9 chips, rather than 8 chips.	8	deponent and the answers given were taken down by me	
9	A. Right. So then you asked -- okay. The	9	in Stenotype notes and thereafter transcribed by use	
10	relationship between -- so it's not an integer	9	of computer-aided transcription and computer printer under my direction.	
11	number of symbols. Okay. Yes.	10		
12	Q. In that situation, would an outer code of	11	and correct transcript of the testimony given at	
13	9 chips fall within the scope of claim 1, but not	12	said examination of said witness.	
14	within the scope of claim 2 ?		I further certify that reading and signing of	
15	A. Yes. If claim 1 is meant to be anything,	13	the deposition was required by the deponent and	
16	it doesn't have to have that particular period.	14		
17	Yes.		I further certify that I am not counsel,	
18	Q. Okay.	15	attorney, or relative of either party, or otherwise interested in the event of this suit.	
19	A. They would be different.	16		
20	MR. HASLAM: I have no further	18		
21	questions.	19		
22	THE VIDEOGRAPHER: This deposition	$\begin{aligned} & 20 \\ & 21 \end{aligned}$	Julianne LaBadia, RDR, CRR	
23	sending at approximately 1:47 p.m.	22		
24	(Deposition concluded at 1:47 p.m.)	$\begin{aligned} & 23 \\ & 24 \\ & \hline \end{aligned}$		
	Page 135			
1	IN D E X			
2	DEPONENT: LEONARD CIMINI, PH.D. PAGE			
3	Examination by Mr. Weinstein 3			
	Examination by Mr. Haslam 132			
4				
	E X H I B I T S			
5	PAGE(S)			
6	DEFENDANT'S DEPOSITION EXHIBITS			
7	Cimini 1. Dr. Cimini's CV 6			
8	Cimini 2. Dr. Cimini's declaration 12			
9	Cimini 3. '559 patent 14			
10	Cimini 4. List of publications 26			
11	Cimini 5. 3GPP standard 117			
12	CERTIFICATE OF REPORTER 136			
13	ERRATA SHEET/DEPONENT'S SIGNATURE 137-138			
14				
15				
16				
17				
18				
19				
20				
21				
22				
23				
24				

