

EXHIBIT K

Apple, Inc. v. Motorola, Inc. et al Doc. 12 Att. 11

Dockets.Justia.com

http://dockets.justia.com/docket/wisconsin/wiwdc/3:2010cv00662/29072/
http://docs.justia.com/cases/federal/district-courts/wisconsin/wiwdc/3:2010cv00662/29072/12/11.html
http://dockets.justia.com/

5,915,131
Jun. 22, 1999

[11]

[45]

111
US005915131A

Patent Number:

Date of Patent:

United States Patent [19]

Knight et al.

[73] Assignee: Apple Computer, Inc., Cupertino,
Calif.

[54] METHOD AND APPARATUS FOR
HANDLING I/O REQUESTS UTILIZING
SEPARATE PROGRAMMING INTERFACES
TO ACCESS SEPARATE I/O SERVICES

[75] Inventors: Holly N. Knight, La Honda; Carl D.
Sutton, Palo Alto; Wayne N.
Meretsky, Los Altos; Alan B. Mimms,
San Jose, all of Calif.

References Cited

ABSTRACT[57]

Forin, A., et al. entitled "An I/O System for Mach 3.0,"
Proceedings of the Usenix Mach Symposium 20-22, Nov.
1991, Monterey, CA, US, 20-22 Nov. 1991, pp. 163-176.
Steve Lemon and Kennan Rossi, entitled "An Object Ori­
ented Device Driver Model," Digest of Papers Compcon
'95, Technologies for the Information Superhighway 5-9,
Mar. 1995, San Francisco, CA, USA pp. 360-366.
Glenn Andert, entitled "Object Frameworks in the Taligent
OS," Intellectual Leverage: Digest of Papers of the Spring
Computer SOCI International Conference (Compcon), San
Francisco, Feb. 28-Mar. 4, 1994, Feb. 24, 1994, Institute of
Electrical and Electronics Engineers, pp. 112-121.
Hu, 'Interconnecting electronic mail networks: Gateways
and translation strategies are proposed for backbone net­
works to interchange incompatible electronic documents on
multivendor networks', Data Communications, p. 128, vol.
17, No. 10, Sep. 1988.
Knibbe, 'IETF's Resource Reservation Protocol to facilitate
mixed voice, data, and video nets', Network World, p. 51,
Apr. 24, 1995.

Primary Examiner-Thomas C. Lee
Assistant Examiner-Rehana Perveen
Attorney, Agent, or Firm-Blakely, Sokoloff, Taylor &
Zafman

A computer system handling multiple applications wherein
groups of I/O services are accessible through separate appli­
cation programming interfaces. Each application has mul­
tiple application programming interfaces by which to access
different families of I/O services, such as I/O devices.

20 Claims, 8 Drawing Sheets

5,553,245 9/1996 Su et al. 395/284
5,572,675 11/1996 Bergler 395/200.2

OTHER PUBLICATIONS

6/1986 Castel et al. 364/200
2/1988 Nichols 370/85
3/1990 Bennett et al. 380/10
1/1991 Tignor et al. 364/200
7/1992 Coyle, Jr. et al. 395/650
9/1992 Basso et al. 395/325
3/1993 Lary et al. 395/425
7/1995 Rimmer et al. 395/275
2/1996 Bondy et al. 395/500
4/1996 Cook et al. 395/800
7/1996 Feeney et al. 395/834
7/1996 Taylor et al. 379/201

U.S. PATENT DOCUMENTS

Appl. No.: 08/435,677

Filed: May 5, 1995

Int. C1.6 G06F 9/40; G06F 13/14
U.S. Cl. 395/892; 395/682; 395/828;

395/702; 707/104; 345/333
Field of Search 395/828, 702,

395/834, 200.2, 892, 682, 309; 345/333;
707/104

4,593,352
4,727,537
4,908,859
4,982,325
5,129,086
5,148,527
5,197,143
5,430,845
5,491,813
5,513,365
5,535,416
5,537,466

[56]

[21]

[22]

[51]
[52]

[58]

2

l APPLICATION 201 JFILE f-- BLOCK f-- SCSI
MANAGER STORAGE MANAGER

API API API

io2 io3 204 USER MODE WORLD

KERNEL WORLD

2?5 11 ~6 11 207

FILE BLOCK SCSI
MANAGER STORAGE MANAGER

FPISERVER FPISERVER FPISERVER
FILE BLOCK SCSI

MANAGER STORAGE MANAGER
FAMILY
~

FAMILY
08 ~ ~

HFS DISK
FILE DRIVER SIM

SYSTEM

~L- tl--

d • 'JJ
.

• 'JJ
. =­ ~ ~ '""'
"

o, Q
IO~ ~ ~ = ~ = ? N ~
N '""'

"
'0 '0 '0 U

l
.... \C ~ U

l
.... ~ ~ ~

'0
E

T
O

O
T

H
E

R

F
IG

.
1"'-

P
O

W
E

R
C

O
M

P
O

N
E

N
T

S
I

S
U

P
P

LY
1

5
2

1
]

V
D

D
M

A
S

S
lr

--
-

S
W

IT
C

H
D

E
C

O
D

E
R

S
T

O
R

A
G

E
1

-
1

5
3

1
5

4
1

0
7

H
O

T
IN

D
IC

A
T

IO
N

)
I

S
IG

N
A

L
1

8
3

C
L

K
T

IM
E

R
1

5
0
I
-
-

18
1

P
O
W
~

P
R

O
C

E
S

S
O

R
M

O
D

E
M

r
,

/
r-.

..
1

0
3

S
IG

N
A

L
1

8
2

V
D

D
'.4

-
1

0
8

1/
0

B
U

S
~

L
O

C
A

L
10

1
B

U
S

B
~
1
0
0

M
A

IN
/

T
R

A
N

S
LA

T
O

R
!

M
E

M
O

R
Y

L
A

N
~

IN
T

E
R

F
A

C
E

1
8

4
TO

1
0

4
1

0
9

U
N

IT
~

C
L

O
C

K
1

4
0

G
E

N
E

R
A

T
O

R
N

O
N

-V
O

LA
T

IL
E

1
6

0
M

E
M

O
R

Y
H

A
R

D
C

O
P

Y
/
'-

-
S

O
U

N
D

1
0

6
D

E
V

IC
E

-
~

)
1

2
4

C
H

IP
1

2
5

1/
0

M
IC

R
O

-
C

O
N

T
R

O
LL

E
R

~
)

C
O

N
T

R
O

LL
E

R
1
~
7
A

F
R

O
M

I
F

LO
P

P
Y

D
IS

K
~

)
1

3
0

1
2

7
I

T
E

M
P

.
IN

TE
R

FJ
,
A

-
-

D
R

IV
E

1
2

6
I

S
E

N
S

O
R

1
4

0
D

IS
P

LA
Y

'\
r
-
-

n
J

..
12

1
C

L
K

t
C

L
O

C
K

K
E

Y
B

O
A

R
D

C
U

R
S

O
R

G
E

N
E

R
A

T
O

R
1

2
2

C
O

N
T

R
O

L
1

2
3

1
6

0

u.s. Patent Jun. 22, 1999 Sheet 2 of 8 5,915,131

2

APPLICATION 201

L- FILE I-- BLOCK I-- SCSI I--

MANAGER STORAGE MANAGER
API API API I

io2
'. ""203 204 USER MODE WORLD

KERNEL WORLD

2?5 !1 2»6 !7 297

FILE BLOCK SCSI
MANAGER STORAGE MANAGER

FPISERVER FPISERVER FPISERVER

FILE BLOCK SCSI
MANAGER STORAGE MANAGER

FAMILY FAMILY FAMILY
08 ~ ~ ~

L-
HFS

I- L-
DISK

I- '- I-

FILE DRIVER SIM

SYSTEM

{ l
FIG. 2

u.s. Patent Jun. 22, 1999 Sheet 3 of 8 5,915,131

USER MODE WORLD

APPLICATION 302

__P_R_O_C_E_D_U_R_Er-C_A_L_L......l:~__~ ~~~~~AMMING

IFPI~~:ARYI ~~~ERFACE

KERNEL MESSAGE

KERNEL MESSAGE

FPISERVER

304

PROCEDURE CALL
-lor

FAMILY:

305

KERNEL WORLD

PROCEDURE CALL

PLUG-IN

307

FIG. 3

PLUG-IN
_______________ PROGRAMMING

INTERFACE
306

u.s. Patent Jun. 22, 1999 Sheet 4 of 8 5,915,131

Xlib u ~4

~
Zlib u ~5

USER MODE WORLD

KERNEL WORLD

401

X
FPI

SERVER

408

X 411

X FAMILY
IMPLEMEN­

TATION

414
~

X
'- PLUG IN -

417

~)

Y
FPI

SERVER

409

Y 412

FIG.4

r------>o~1"'--___,1-.,
Z

FPI
SERVER

410

Z 413

Z FAMILY
IMPLEMEN­

TATION

416

~
Z

'- PLUG IN - ../

419

403

Jun. 22, 1999u.s. Patent Sheet 5 of 8 5,915,131

Dlib u
503

USER MODE WORLD

KERNEL WORLD

Z
FPI

SERVER

502
. /

r---~---. 504
D FPI J...-=';-

SERVER

z

Z FAMILY
IMPLEMEN­

TATION

~
Z D

'- PLUG IN "-...I-_----Ir 505 ~
501 ;:===~=======::::=.J

FIG. 5

u.s. Patent

FAMILY
A

Jun. 22, 1999 Sheet 6 of 8 5,915,131

FAMILY
B

601

SHARED CODE
AND/OR DATA

FIG. 6
602

u.s. Patent Jun. 22, 1999 Sheet 7 of 8 5,915,131

APPLICATION 710

~
711

APls IV

USER MODE WORLD

KERNEL WORLD

7~ v

~ FPI SERVER > ACCEPT
FUNCTION

> SINGLE
TASK

7~ STREAMS
~ WORLD

IPROTOCOL I
IPROTOCOL I
IPROTOCOL I

? ~

NETWORK
- DEVICE ~,./

DRIVER

FIG. 7

u.s. Patent Jun. 22, 1999

APPLICATION a01

~

P
a02

API

--~-

Sheet 8 of 8 5,915,131

803

FPISERVER

USER MODE WORLD

KERNEL WORLD

FAMILY
804

WRAPPER
TASK

FIG. 8

5,915,131

DETAILED DESCRIPTION OF THE PRESENT
INVENTION

2
FIG. 1 a block diagram of one embodiment in the com­

puter system of the present invention.

FIG. 2 is an overview of the I/O architecture of the present
invention.

5 FIG. 3 illustrates a flow diagram of I/O service request
handling according to the teachings of the present invention.

FIG. 4 illustrates an overview of the I/O architecture of
the present invention having selected families accessing

10 other families.
FIG. 5 illustrates extended programming family interface

of the present invention.

FIG. 6 illustrates plug-in modules of different families
that share code and/or data.

FIG. 7 illustrates a single task activation model according
to the teachings of the present invention.

FIG. 8 illustrates a task-per-plug-in model used as an
activation model according to the teachings of the present
invention.

A method and apparatus handling service requests is
described. In the following detailed description of the
present invention numerous specific details are set forth in
order to provide a thorough understanding of the present
invention. However, it will be apparent to one skilled in the
art that the present invention may be practiced without these
specific details. In other instances, well-known structures
and devices are shown in block diagram form, rather than in
detail, in order to avoid obscuring the present invention.

Some portions of the detailed descriptions which follow
are presented in terms of algorithms and symbolic repre­
sentations of operations on data bits within a computer
memory. These algorithmic descriptions and representations
are the means used by those skilled in the data processing
arts to most effectively convey the substance of their work
to others skilled in the art. An algorithm is here, and
generally, conceived to be a self-consistent sequence of steps
leading to a desired result. The steps are those requiring
physical manipulations of physical quantities. Usually,
though not necessarily, these quantities take the form of
electrical or magnetic signals capable of being stored,
transferred, combined, compared, and otherwise manipu­
lated. It has proven convenient at times, principally for
reasons of common usage, to refer to these signals as bits,
values, elements, symbols, characters, terms, numbers, or
the like.

It should be borne in mind, however, that all of these and
similar terms are to be associated with the appropriate
physical quantities and are merely convenient labels applied
to these quantities. Unless specifically stated otherwise as
apparent from the following discussions, it is appreciated

55 that throughout the present invention, discussions utilizing
terms such as "processing" or "computing" or "calculating"
or "determining" or "displaying" or the like, refer to the
action and processes of a computer system, or similar
electronic computing device, that manipulates and trans-

60 forms data represented as physical (electronic) quantities
within the computer system's registers and memories into
other data similarly represented as physical quantities within
the computer system memories or registers or other such
information storage, transmission or display devices.

The present invention also relates to apparatus for per­
forming the operations herein. This apparatus may be spe­
cially constructed for the required purposes, or it may

SUMMARY OF THE INVENTION

BACKGROUND OF THE INVENTION

BRIEF DESCRIPTION OF THE DRAWINGS

1
METHOD AND APPARATUS FOR

HANDLING I/O REQUESTS UTILIZING
SEPARATE PROGRAMMING INTERFACES

TO ACCESS SEPARATE I/O SERVICES

FIELD OF THE INVENTION

The invention relates to the field of computer systems;
particularly, the present invention relates to handling service
requests generated by application programs.

Application programs running in computer systems often
access system resources, such as input/output (I/O) devices.
These system resources are often referred to as services.
Certain sets of services (e.g., devices) have similar charac- 15

teristics. For instance, all display devices or allADB devices
have similar interface requirements.

To gain access to I/O resources, applications generate
service requests to which are sent through an application 20

programming interface (API). The service requests are con­
verted by the API to a common set of functions that are
forwarded to the operating system to be serviced. The
operating system then sees that service requests are
responded to by the appropriate resources (e.g., device). For 25

instance, the operating system may direct a request to a
device driver.

One problem in the prior art is that service requests are not
sent directly to the I/O device or resource. All service
requests from all applications are typically sent through the 30

same API. Because of this, all of the requests are converted
into a common set of functions. These common set of
functions do not have meaning for all the various types of
I/O devices. For instance, a high level request to play a
sound may be converted into a write function to a sound 35

device. However, the write function is not the best method
of communicating sound data to the sound device. Thus,
another conversion of write data to a sound data format may
be required. Also, some functions do not have a one-to-one
correspondence with the function set of some I/O devices. 40

Thus, it would be desirable to avoid this added complexity
and to take advantage of the similar characteristics of classes
of I/O devices when handling I/O requests, while providing
services and an environment in which to run those services
that is tuned to the specific device needs and requirements. 45

A method and apparatus for handling I/O requests is
described. In the present invention, the I/O requests are
handled by the computer system having a bus and a memory 50

coupled to the bus that stores data and programming instruc­
tions. The programming instructions include application
programs and an operating system. A processing unit is
coupled to the bus and runs the operating system and
application programs by executing programming instruc­
tions. Each application programs have multiple separate
programming interfaces available to access multiple sets of
I/O services provided through the operating system via
service requests.

The present invention will be understood more fully from
the detailed description given below and from the accom­
panying drawings of various embodiments of the invention,
which, however, should not be taken to limit the invention 65

to the specific embodiments, but are for explanation and
understanding only.

5,915,131
3 4

selections to processor 103, and a cursor control 123, such
as a trackball, stylus, mouse, or trackpad, etc., for control­
ling cursor movement. The system also includes a sound
chip 125 coupled to I/O controller 130 for providing audio
recording and play back. Sound chip 125 may include a
sound circuit and its driver which are used to generate
various audio signals from the computer system. I/O con­
troller 130 may also provide access to a floppy disk and
driver 126. The processor 103 controls I/O controller 130
with its peripherals by sending commands to I/O controller
130 via local bus 100, interface unit 140 and I/O bus 101.

Batteries or other power supply 152 may also be included
to provide power necessary to run the various peripherals
and integrated circuits in the computer system. Power sup­
ply 152 is typically a DC power source that provides a
constant DC power to various units, particularly processor
103. Various units such as processor 103, display 121, etc.,
also receive clocking signals to synchronize operations
within the computer systems. These clocking signals may be
provided by a global clock generator or multiple clock
generators, each dedicated to a portion of the computer
system. Such a clock generator is shown as clock generator
160. In one embodiment, clock generator 160 comprise a
phase-locked loop (PLL) that provides clocking signals to
processor 103.

I/O controller 140 includes control logic to coordinate the
thermal management. Several additional devices are
included within the computer system to operate with the
control logic within I/O controller 140. A timer 150, a switch
153 and a decoder 154 are included to function in connection
with the control logic. In one embodiment, decoder 154 is
included within bus interface unit 140 and timer 150 is
included in I/O controller 130.

Switch 153 is a p-channel power MOSFET, which has its
gate connected to the power signal 182, its source to the
power supply and its drain to processor's VDD pin.

In one embodiment, processor 103 is a member of the
PowerPCTM family of processors, such as those manufac­
tured by Motorola Corporation of Schaumberg, Ill. The
memory in the computer system is initialized to store the
operating system as well as other programs, such as file
directory routines and application programs, and data input­
ted from I/O controller 130. In one embodiment, the oper­
ating system is stored in ROM 106, while RAM 104 is
utilized as the internal memory for the computer system for
accessing data and application programs. Processor 103
accesses memory in the computer system via an address bus
within bus 100. Commands in connection with the operation
of memory in the computer system are also sent from the
processor to the memory using bus 100. Bus 100 also
includes a bi-directional data bus to communicate data in
response to the commands provided by processor 103 under
the control of the operating system running on it.

Of course, certain implementations and uses of the
55 present invention may neither require nor include all of the

above components. For example, in certain implementations
a keyboard or cursor control device for inputting informa­
tion to the system may not be required. In other
implementations, it may not be required to provide a display
device displaying information. Furthermore, the computer
system may include additional processing units.

The operating system running on processor 103 takes care
of basic tasks such as starting the system, handling
interrupts, moving data to and from memory 104 and
peripheral devices via input/output interface unit 140, and
managing the memory space in memory 104. In order to take
care of such operations, the operating system provides

comprise a general purpose computer selectively activated
or reconfigured by a computer program stored in the com­
puter. The algorithms and displays presented herein are not
inherently related to any particular computer or other appa­
ratus. Various general purpose machines may be used with 5

programs in accordance with the teachings herein, or it may
prove convenient to construct more specialized apparatus to
perform the required method steps. The required structure
for a variety of these machines will appear from the descrip­
tion below. In addition, the present invention is not 10

described with reference to any particular programming
language. It will be appreciated that a variety of program­
ming languages may be used to implement the teachings of
the invention as described herein.
Overview of the Computer System of the Present Invention 15

Referring to FIG. 1, an overview of a computer system of
the present invention is shown in block diagram form. The
present invention may be implemented on a general purpose
microcomputer, such as one of the members of the Apple
family of personal computers, one of the members of the 20

IBM personal computer family, or one of several other
computer devices which are presently commercially avail­
able. Of course, the present invention may also be imple­
mented on a multi-user system while encountering all of the
costs, speed, and function advantages and disadvantages 25

available with these machines.
As illustrated in FIG. 1, the computer system of the

present invention generally comprises a local bus or other
communication means 100 for communicating information,
a processor 103 coupled with local bus 100 for processing 30

information, a random access memory (RAM) or other
dynamic storage device 104 (commonly referred to as a
main memory) coupled with local bus 100 for storing
information and instructions for processor 103, and a read­
only memory (ROM) or other non-volatile storage device 35

106 coupled with local bus 100 for storing non-volatile
information and instructions for processor 103.

The computer system of the present invention also
includes an input/output (I/O) bus or other communication
means 101 for communication information in the computer 40

system. A data storage device 107, such as a magnetic tape
and disk drive, including its associated controller circuitry,
is coupled to I/O bus 101 for storing information and
instructions. A display device 121, such as a cathode ray
tube, liquid crystal display, etc., including its associated 45

controller circuitry, is also coupled to I/O bus 101 for
displaying information to the computer user, as well as a
hard copy device 124, such as a plotter or printer, including
its associated controller circuitry for providing a visual
representation of the computer images. Hard copy device 50

124 is coupled with processor 103, main memory 104,
non-volatile memory 106 and mass storage device 107
through I/O bus 101 and bus translator/interface unit 140. A
modem 108 and an ethernet local area network 109 are also
coupled to I/O bus 101.

Bus interface unit 140 is coupled to local bus 100 and I/O
bus 101 and acts as a gateway between processor 103 and
the I/O subsystem. Bus interface unit 140 may also provide
translation between signals being sent from units on one of
the buses to units on the other bus to allow local bus 100 and 60

I/O bus 101 to co-operate as a single bus.
An I/O controller 130 is coupled to I/O bus 101 and

controls access to certain I/O peripherals in the computer
system. For instance, I/O controller 130 is coupled to
controller device 127 that controls access to an alpha- 65

numeric input device 122 including alpha-numeric and other
keys, etc., for communicating information and command

5,915,131
5

multiple execution environments at different levels (e.g.,
task level, interrupt level, etc.). Tasks and execution envi­
ronments are known in the art.
Overview of the Present Invention

In one embodiment, the computer system runs a kernel- 5

based, preemptive, multitasking operation system in which
applications and I/O services, such as drivers, operate in
separate protection domains (e.g., the user and kernel
domains, respectively). The user domain does not have
direct access to data of the kernel domain, while the kernel 10

domain can access data in the user domain.
The computer system of the present invention uses one or

more separate families to provide I/O services to the system.
Each I/O family provides a set of I/O services to the system.
For instance, a SCSI family and its SCSI interface modules 15

(SIMs) provide SCSI based services, while a file systems
family and its installable file systems provide file manage­
ment services. In one embodiment, an I/O family is imple­
mented by multiple modules and software routines.

Each family defines a family programming interface (FPI) 20

designed to meet the particular needs of that family. An FPI
provides access to a given family's plug-ins, which are
dynamically loaded pieces of software that each provide an
instance of the service provided by a family. For example,
within the file systems family (File Manager), a plug-in 25

implements file-system-specific services. In one
embodiment, plug-ins are a superset of device drivers, such
that all drivers are plug-ins, but not all plug-ins are drivers.

Access to services is available only through an I/O
family's programming interface. In one embodiment, hard- 30

ware is not directly accessible to application software, nor is
it vulnerable to application error. Applications have access
to hardware services only through an I/O family's program­
ming interface. Also, the context within which an I/O service
runs and the method by which it interacts with the system is 35

defined by the I/O family to which it belongs.
FIG. 2 illustrates the relationship between an application,

several I/O families, and their plug-ins. Referring to FIG. 2,
an application 201 requests services through one or more
family FPIs, shown in FIG. 2 as File Manager API 202, 40

Block Storage API 203, and SCSI Manager API 204. The
File Manager API 202, Block Storage API 203, and SCSI
Manager API 204 are available to one or more applications
in the user domain.

In one embodiment, the service requests from application 45

201 (and other applications) are sent through File Manager
API 202, Block Storage API 203, and/or SCSI Manager API
204, etc., and flow as messages to family FPI servers
205-207, which reside in the kernel domain. In one
embodiment, the messages are delivered using a kernel- 50

supplied messaging service.
Any communication method may be used to communi­

cate service requests to I/O families. In one embodiment,
kernel messaging is used between the FPI libraries and the
FPI server for a given family, between different families, and 55

between plug-ins of one family and another family. The
communication method used should be completely opaque
to a client requesting a family service.

Each of the FPI servers 205-207 permit access to a
distinct set of services. For example, File Manager FPI 60

server 205 handles service for the file manager family of
services. Similarly, the Block Storage FPI server 206
handles service requests for the block storage family of
serVIces.

Note that FIG. 2 shows three families linked by kernel 65

messages. Messages flow from application level through a
family to another family, and so on. For instance, a service

6
request may be communicated from application level to the
file system family, resulting in one or more requests to the
block storage family, and finally one or more to the SCSI
family to complete a service request. Note that in one
embodiment, there is no hierarchical relationship among
families; all families are peers of each other.
Families in the Present Invention

A family provides a distinct set of services to the system.
For example, one family may provide network services,
while another provides access to a variety of block storage
mediums. A family is associated with a set of devices that
have similar characteristics, such as all display devices or all
ADB devices.

In one embodiment, each family is implemented in soft­
ware that runs in the computer system with applications. A
family comprises software that includes a family program­
ming interface and its associated FPI library or libraries for
its clients, an FPI server, an activation model, a family
expert, a plug-in programming interface for its plug-ins, and
a family services library for its plug-ins.

FIG. 3 illustrates the interaction between these compo­
nents. Referring to FIG. 3, a family programming interface
(FPI) 301 provides access to the family's services to one or
more applications, such as application 302. The FPI 301 also
provides access to plug-ins from other families and to
system software. That is, an FPI is designed to provide
callers with services appropriate to a particular family,
whether those calls originate from in the user domain or the
operating system domain.

For example, when an application generates data for a
video device, a display FPI tailored to the needs of video
devices is used to gain access to display services. Likewise,
when an application desires to input or output sound data,
the application gains access to a sound family of services
through an FPI. Therefore, the present invention provides
family programming interfaces tailored to the needs of
specific device families.

Service requests from application 302 (or other
applications) are made through an FPI library 303. In one
embodiment, the FPI library 303 contains code that passes
requests for service to the family FPI server 304. In one
embodiment, the FPI library 303 maps FPI function calls
into messages (e.g., kernel messages) and sends them to the
FPI server 304 of the family for servicing. In one
embodiment, a family 305 may provide two versions of its
FPI library 303, one that runs in the user domain and one that
runs in the operating system kernel domain.

In one embodiment, FPI server 304 runs in the kernel
domain and responds to service requests from family clients
(e.g., applications, other families, etc.). FPI server 304
responds to a request according to the activation model (not
shown) of the family 305. In one embodiment, the activation
model comprises code that provides the runtime environ­
ment of the family and its plug-ins. For instance, FPI server
304 may put a request in a queue or may call a plug-in
directly to service the request. As shown, the FPI server 304
forwards a request to the family 305 using a procedure call.
Note that if FPI library 303 and the FPI server 304 use kernel
messaging to communicate, the FPI server 304 provides a
message port.

Each family 305 includes an expert (not shown) to
maintain knowledge of the set of family devices. In one
embodiment, the expert comprises code within a family 305
that maintains knowledge of the set of family plug-ins
within the system. At system startup and each time a change
occurs, the expert is notified.

In one embodiment, the expert may maintain the set of
family services using a central device registry in the system.

5,915,131
7

The expert scans the device registry for plug-ins that belong
to its family. For example, a display family expert looks for
display device entries. When a family expert finds an entry
for a family plug-in, it instantiates the plug-in, making it
available to clients of the family. In one embodiment, the
system notifies the family expert on an ongoing basis about
new and deleted plug-ins in the device registry. As a result,
the set of plug-ins known to and available through the family
remains current with changes in system configuration.

Note that family experts do not add or alter information in
the device registry nor do they scan hardware. In one
embodiment, the present invention includes another level of
families (i.e., low-level families) whose responsibility is to
discover devices by scanning hardware and installing and
removing information for the device registry. These low­
level families are the same as the families previously dis­
cussed above (i.e., high level family) in other ways, i.e. they
have experts, services, an FPI, a library, an activation model
and plug-ins. The low-level families' clients are usually
other families rather than applications. In one embodiment,
families are insulated from knowledge of physical connec­
tivity. Experts and the device registry are discussed in more
detail below.

A plug-in programming interface (PPI) 306 provides a
family-to-plug-in interface that defines the entry points a
plug-in supports so that it can be called and a plug-in-to­
family interface that defines the routines plug-ins call when
certain events, such as an I/O completion, occur. In addition,
PPI 306 defines the path through which the family and its
plug-in exchange data.

A family services library (not shown) is a collection of
routines that provide services to the plug-ins of a family. The
services are specific to a given family and they may be
layered on top of services provided by the kernel. Within a
family, the methods by which data is communicated,
memory is allocated, interrupts are registered and timing
services are provided may be implemented in the family
services library. Family services libraries may also maintain
state information needed by a family to dispatch and manage
requests.

For example, a display family services library provides
routines that deal with vertical blanking (which is a concern
of display devices). Likewise, SCSI device drivers manipu­
late command blocks, so the SCSI family services library
contains routines that allow block manipulation. A family
services library that provides commonly needed routines
simplifies the development of that family's plug-ins.

Through the PPI 306, a call is made to a plug-in 307. In
one embodiment, a plug-in, such as plug-in 307, comprises
dynamically loaded code that runs in the kernel's address
space to provide an instance of the service provided by a
family. For example, within the file systems family, a plug-in
implements file-system-specific services. The plug-ins
understand how data is formatted in a particular file system
such as HFS or DOS-FAT. On the other hand, it is not the
responsibility of file systems family plug-ins to obtain data
from a physical device. In order to obtain data from a
physical device, a file system family plug-in communicates
to, for instance, a block storage family. In one embodiment,
block storage plug-ins provide both media-specific drivers,
such as a tape driver, a CD-ROM driver, or hard disk driver,
and volume plug-ins that represent partitions on a given
physical disk. Block storage plug-ins in turn may make SCSI
family API calls to access data across the SCSI bus on a
physical disk. Note that in the present invention, plug-ins are
a superset of device drivers. For instance, plug-ins may
include code that does not use hardware. For instance, file

8
system and block storage plug-ins are not drivers (in that
drivers back hardware).

Applications, plug-ins from other I/O families, and other
system software can request the services provided by a

5 family's plug-ins through the family's FPI. Note also that
plug-ins are designed to operate in the environment set forth
by their family activation model.

In one embodiment, a plug-in may comprises two code
sections, a main code section that runs in a task in the kernel

10 domain and an interrupt level code section that services
hardware interrupts if the plug-in is, for instance, a device
driver. In one embodiment, only work that cannot be done at
task level in the main code section should be done at
interrupt level. In one embodiment, all plug-ins have a main

15 code section, but not all have interrupt level code sections.
The main code section executes and responds to client

service requests made through the FPI. For example, sound
family plug-ins respond to sound family specific requests
such as sound playback mode setting (stereo, mono, sample

20 size and rate), sound play requests, sound play cancellation,
etc. The interrupt level code section executes and responds
to interrupts from a physical device. In one embodiment, the
interrupt level code section performs only essential
functions, deferring all other work to a higher execution

25 levels.
Also because all of the services associated with a par­

ticular family are tuned to the same needs and requirements,
the drivers or plug-ins for a given family may be as simple
as possible.

30 Family Programming Interfaces
In the present invention, a family provides either a user­

mode or a kernel-mode FPI library, or both, to support the
family's FPI. FIG. 4 illustrates one embodiment of the I/O
architecture of the present invention. Referring to FIG. 4,

35 three instances of families 401-403 are shown operating in
the kernel environment. Although three families are shown,
the present invention may have any number of families.

In the user mode, two user-mode FPI libraries, Xlibu 404
and Zlibu 405, are shown that support the FPIs for families

40 X and Z, respectively. In the kernel environment, two
kernel-mode FPI libraries, Ylibk 406 and Zlibk , 407, for
families Y and Z, respectively, are shown.

Both the user-mode and the kernel-mode FPI libraries
present the same FPI to clients. In other words, a single FPI

45 is the only way family services can be accessed. In one
embodiment, the user-mode and kernel mode libraries are
not the same. This may occur when certain operations have
meaning in one mode and not the other. For example,
operations that are implemented in the user-mode library,

50 such as copying data across address-space boundaries, may
be unnecessary in the kernel library.

In response to service requests, FPI libraries 404 and 405
map FPI functions into messages for communication from
the user mode to the kernel mode. In one embodiment, the

55 messages are kernel messages.
The service requests from other families are generated by

plug-ins that make calls on libraries, such as FPI libraries
406 and 407. In one embodiment, FPI libraries 406 and 407
map FPI functions into kernel messages and communicate

60 those messages to FPI servers such as Y FPI server 409 and
Z FPI server 410 respectively. Other embodiments may use
mechanisms other than kernel messaging to communicate
information.

In the example, the Z family 403 has both a user-mode
65 library 405 and a kernel-mode library 407. Therefore, the

services of the Z family may be accessed from both the user
mode and the kernel mode.

9
5,915,131

10
In response to service request messages, X FPI server

408, Y FPI server 409 and Z FPI server 410 dispatch
requests for services to their families. In one embodiment,
each of FPI servers 408-410 receives a kernel message,
maps the message into a FPI function called by the client,
and then calls the function in the family implementation
(414-416).

In one embodiment, there is a one-to-one correspondence
between the FPI functions called by clients and the function
called by FPI servers 408-410 as a result. The calls from FPI
serves 408-410 are transferred via interfaces 411-413. For
instance, X interface 411 represents the interface presented
to the FPI server 408 by the X family 414. It is exactly the
same as the FPI available to applications or other system
software. The same is true ofY interface 412 and Z interface
413.

The X family implementation 414 represents the family
activation model that defines how requests communicated
from server 408 are serviced by the family and plug-in(s). In
one embodiment, X family implementation 414 comprises
family code interfacing to plug-in code that completes the
service requests from application 400 via server 408.
Similarly, the Y family implementation 415 and Z family
implementation 416 define their family's plug-in activation
models.

X plug-in 417, Y plug-in 418 and Z plug-in 419 operate
within the activation model mandated by the family and
provide code and data exports. The required code and data
exports and the activation model for each family of drivers
is family specific and different.
Extending Family Programming Interfaces

A plug-in may provide a plug-in-specific interface that
extends its functionality beyond that provided by its family.
This is useful in a number of situations. For example, a block
storage plug-in for a CD-ROM device may provide a block
storage plug-in interface required of the CD-ROM device as
well as an interface that allows knowledgeable application
software to control audio volume and to play, pause, stop,
and so forth. Such added capabilities require a plug-in­
specific API.

If a device wishes to export extended functionality outside
the family framework, a separate message port is provided
by the device and an interface library for that portion of the
device driver. FIG. 5 illustrates the extension of a family
programming interface.

Referring to FIG. 5, a plug-in module, Z plug-in 501,
extends beyond the Z family boundary to interface to family
implementation D 502 as well. A plug-in that has an
extended API offers features in addition to those available to
clients through it's family's FPI. In order to provide extra
services, the plug-in provides additional software shown in
FIG. 5 as an interface library Dlibu 503, the message port
code D FPI server 504, and the code that implements the
extra features D 505.
Sharing Code and Data Between Plug-ins

In one embodiment, two or more plug-ins can share data
or code or both, regardless of whether the plug-ins belong to
the same family or to different families. Sharing code or data
is desirable when a single device is controlled by two or
more families. Such a device needs a plug-in for each family.
These plug-ins can share libraries that contain information
about the device state and common code. FIG. 6 illustrates
two plug-ins that belong to separate families and that share
code and data.

Plug-ins can share code and data through shared libraries.
Using shared libraries for plug-ins that share code or data
allows the plug-ins to be instantiated independently without

encountering problems related to simultaneous instantiation.
Referring to FIG. 6, the first plug-in 601 to be opened and
initialized obtains access to the shared libraries. At this
point, the first plug-in 601 does not share access. When the

5 second plug-in 602 is opened and initialized, a new connec­
tion to the shared libraries is created. From that point, the
two plug-ins contend with each other for access to the shared
libraries.

Sharing code or data may also be desirable in certain
10 special cases. For instance, two or more separate device

drivers may share data as a way to arbitrate access to a
shared device. An example of this is a single device that
provides network capabilities and real time clock. Each of
these functions belong to a distinct family but may originate

15 in a single physical device.
Activation Models in the Present Invention

An activation model defines how the family is imple­
mented and the environment within which plug-ins of the
family execute. In one embodiment, the activation model of

20 the family defines the tasking model a family uses, the
opportunities the family plug-ins have to execute and the
context of those opportunities (for instance, are the plug-ins
called at task time, during privileged mode interrupt
handling, and so forth), the knowledge about states and

25 processes that a family and its plug-ins are expected to have,
and the portion of the service requested by the client that is
performed by the family and the portion that is performed by
the plug-ins.

Each model provides a distinctly different environment
30 for the plug-ins to the family, and different implementation

options for the family software. Examples of activation
models include the single-task model, the task-per-plug-in
model, and the task-per-request model. Each is described in
further detail below. Note that although three activation

35 models are discussed, the choice of activation model is a
design choice and different models may be used based on the
needs and requirements of the family.

In one embodiment, the activation model uses kernel
messaging as the interface between the FPI libraries that

40 family clients link to and the FPI servers in order to provide
the asynchronous or synchronous behavior desired by the
family client. Within the activation model, asynchronous I/O
requests are provided with a task context. In all cases, the
implementation of the FPI server depends on the family

45 activation model.
The choice of activation model limits the plug-in imple­

mentation choices. For example, the activation model
defines the interaction between a driver's hardware interrupt
level and the family environment in which the main driver

50 runs. Therefore, plug-ins conform to the activation model
employed by its family.
Single-Task Model

One of the activation models that may be employed by a
family is referred to herein as the single-task activation

55 model. In the single-task activation model, the family runs
as a single monolithic task which is fed from a request queue
and from interrupts delivered by plug-ins. Requests are
delivered from the FPI library to an accept function that
enqueues the request for processing by the family's process-

60 ing task and wakes the task if it is sleeping. Queuing,
synchronization, and communication mechanism within the
family follow a set of rules specified by the family.

The interface between the FPI Server and a family imple­
mentation using the single-task model is asynchronous.

65 Regardless of whether the family client called a function
synchronously or asynchronously, the FPI server calls the
family code asynchronously. The FPI server maintains a set

5,915,131
11 12

responsible for making the data associated with a request
available to the family, which in turn makes it available to
the plug-in that services the request. In some instances, this
responsibility includes copying or mapping buffers associ-

5 ated with the original request message to move the data from
user address space to the kernel level area.

The family code 804 consists in part of one or more tasks,
one for each family plug-in. The tasks act as a wrapper for
the family plug-ins such that all tasking knowledge is

10 located in the family code. A wrapper is a piece of code that
insulates called code from the original calling code. The
wrapper provides services to the called code that the called
code is not aware of.

When a plug-in's task receives a service request (by
whatever mechanisms the family implementation uses), the

15 task calls its plug-in's entry points, waits for the plug-in's
response, and then responds to the service request.

The plug-in performs the work to actually service the
request. Each plug-in does not need to know about the
tasking model used by the family or how to respond to event

20 queues and other family mechanisms; it only needs to know
how to perform its particular function.

For concurrent drivers, all queuing and state information
describing an I/O request is contained within the plug-in
code and data and within any queued requests. The FPI

25 library forwards all requests regardless of the status of
outstanding I/O requests to the plug-in. When the client
makes a synchronous service request, the FPI library sends
a synchronous kernel message. This blocks the requesting
client, but the plug-in's task continues to run within its own

30 task context. This permits clients to make requests of this
plug-in even while another client's synchronous request is
being processed.

In some cases of a family, a driver (e.g., 805) can be either
concurrent or nonconcurrent. Nevertheless, clients of the

35 family may make synchronous and asynchronous requests,
even though the nonconcurrent drivers can handle only one
request at a time. The device manager FPI server 803 knows
that concurrent drivers cannot handle multiple requests
concurrently. Therefore, FPI server 803 provides a mecha-

40 nism to queue client requests and makes no subsequent
requests to a task until the task signals completion of an
earlier I/O request.

When a client calls a family function asynchronously, the
FPI library sends an asynchronous kernel message to the FPI

45 server and returns to the caller. When a client calls a family
function synchronously, the FPI library sends a synchronous
kernel message to the FPI server and does not return to the
caller until the FPI server replies to the message, thus
blocking the caller's execution until the I/O request is

50 complete.
In either case, the behaviors of the device manager FPI

server 803 is exactly the same: for all incoming requests, it
either queues the request or passes it to the family task,
depending on whether the target plug-in is busy. When the

55 plug-in signals that the I/O operation is complete, the FPI
server 803 replies to the kernel message. When the FPI
library receives the reply, it either returns to the synchronous
client, unblocking its execution or it notifies the asynchro-
nous client about the I/O completion.

The task-per-plug-in model is intermediate between the
single-task and task-per-request models in terms of the
number of tasks it typically uses. The task-per-plug-in model
is advantageously used where the processing of I/O requests
varies widely among the plug-ins.

65 Task-Per-Request Model
The task-per-request model shares the following charac­

teristics with the two activation models already discussed:

of kernel message IDs that correspond to messages to which
the FPI server has not yet replied. The concept of maintain­
ing kernel message IDs corresponding to pending I/O server
request messages is well-known in the art;

Consider as an example family 700, which uses the
single-task activation model, shown in FIG. 7. Referring to
FIG. 7, an application 710 is shown generating a service
request to the family's APIs 711. APIs 711 contain at least
one library in which service requests are mapped to FPl
functions. The FPI functions are forwarded to the family's
FPI server 701. FPI server 701 dispatches the FPI function
to family implementation 703, which includes various pro­
tocols and a network device driver that operate as a single
task. Each protocol layer provides a different level of
serVIce.

The FPI server 701 is an accept function that executes in
response to the calling client via the FPI library (not shown).
An accept function, unlike a message-receive-based kernel
task, is able to access data within the user and kernel bands
directly. The accept function messaging model requires that
FPI server 701 be re-entrant because the calling client task
may be preempted by another client task making service
requests.

When an I/O request completes within the family's
environment, a completion notification is sent back to the
FPI server 701, which converts the completion notification
into the appropriate kernel message ID reply. The kernel
message ID reply is then forwarded to the application that
generated the service request.

With a single-task model, the family implementation is
insulated from the kernel in that the implementation does it
not have kernel structures, IDs, or tasking knowledge. On
the other hand, the relationship between FPI server 701 and
family code 702 is asynchronous, and has internal knowl­
edge of data structures and communication mechanisms of
the family.

The single-task model may be advantageously employed
for families of devices that have one of several character­
istics: (1) each I/O request requires little effort of the
processing unit. This applies not only to keyboard or mouse
devices but also to DMA devices to the extent that the
processing unit need only set up the transfer, (2) no more
than one I/O request is handled at once, such that, for
instance, the family does not allow interleaving of I/O
requests. This might apply to sound, for example, or to any
device for which exclusive reservation is required (i.e.,
where only one client can use a device at a time). The
opposite of a shared resource. Little effort for the processor
exists where the processor initiates an I/O request and then
is not involved until the request completes, or (3) the family
to be implemented provides its own scheduling mechanisms
independent of the underlying kernel scheduling. This
applies to the Unix™ stream programming model.
Task-Per-Plug-In Model

For each plug-in instantiated by the family, the family
creates a task that provides the context within which the
plug-in operates.

FIG. 8 illustrates the task-per-plug-in model. Referring to
FIG. 8, an application 801 generates service requests for the
family, which are sent to FPI 802. Using an FPI library, the 60

FPI 802 generates a kernel message according to the family
activation model 804 and a driver, such as plug-in driver
805.

In one embodiment, the FPI server 803 is a simple
task-based message-receive loop or an accept function. FPI
server 803 receives requests from calling clients and passes
those requests to the family code 804. The FPI server 803 is

5,915,131
13 14

sented by the entry and that contain a reference to the driver
in control of the device.

Multiple low-level experts are used, where each such
expert is aware of the connection scheme of p~ysicald~vic~s
to the system and installs and removes that mformatIOn m

5 the device tree portion of the device registry. For example a
low-level expert, referred to herein as a bus expert or a
motherboard expert, has specific knowledge of a piece of
hardware such as a bus or a motherboard. Also, a SCSI bus
expert scans a SCSI bus for devices, and installs an entry

10 into the device tree for each device that it finds. The SCSI
bus expert knows nothing about a particular device for
which it installs an entry. As part of the installation, a driver
gets associated with the entry by the SCSI bus expert. The
driver knows the capabilities of the device and specifies that

15 the device belongs to a given family. This information is
provided as part of the driver or plug-in descriptive structure
required of all plug-ins as part of their PPI implementation.

Low-level experts and family experts use a device registry
notification mechanism to recognize changes in the system

20 configuration and to take family-specific action in response
to those changes.

An example of how family experts, low-level experts, and
the device registry service operate together to stay aware of
dynamic changes in system configuration follows: Suppose
a motherboard expert notices that a new bus, a new network

25 interface and new video device have appeared within the
system. The motherboard expert adds a bus node, a network
node, and a video node to the device tree portion of the
device registry. The device registry service notifies all
software that registered to receive notifications of these

30 events.
Once notified that changes have occurred in the device

registry, the networking and video family experts scan the
device registry and notice the new entry belonging to their
family type. Each of the experts adds an entry in the family

35 subtree portion of the device registry.
The SCSI bus expert notices an additional bus, and probes

for SCSI devices. It adds a node to the device registry for
each SCSI device that it finds. New SCSI devices in the
device registry result in perusal of the device registry by the

40 block storage family expert. The block storage expert
notices the new SCSI devices and loads the appropriate
drivers, and creates the appropriate device registry entries, to
make these volumes available to the file manager. The file
manager receives notification of changes to the block stor­
age family portion of the device registry, and notifies the

45 FinderTM that volumes are available. These volumes then
appear on the user's desktop.

Whereas, many alterations and modifications of the
present invention will no doubt become apparent to a person
of ordinary skill in the art after having read the foregoing

50 description, it is to be understood that the particular embodi­
ment shown and described by way of illustration are in no
way to be considered limiting. Therefore, reference to the
details of the various embodiments are not intended to limit
the scope of the claims which themselves recite only those

55 features regarded as essential to the invention.
Thus, a method and apparatus for handling I/O requests in

a computer system has been described.
We claim:
1. A computer system comprising:
a bus;
at least one memory coupled to the bus for storing data

and programming instructions that include applications
and an operating system; and

a processing unit coupled to the bus and running the
operating system and applications by executing pro­
gramming instructions, wherein an application has a
first plurality of tailored distinct programming inter-

(1) the FPI library to FPI server communication provides the
synchronous or asynchronous calling behavior requested by
family clients, and (2) the FPI library and FPI server use
kernel messages to communicate I/O requests between
themselves. However, in the task-per-request model, the FPI
server's interface to the family implementation is com­
pletely synchronous.

In one embodiment, one or more internal family request
server tasks, and, optionally, an accept function, wait for
messages on the family message port. An arriving message
containing information describing an I/O request awakens
one of the request server tasks, which calls a family function
to service the request. All state information necessary to
handle the request is maintained in local variables. The
request server task is blocked until the I/O request
completes, at which time it replies to the kernel mess.age
from the FPI library to indicate the result of the operatIOn.
After replying, the request server task waits for more mes­
sages from the FPI library.

As a consequence of the synchronous nature of the
interface between the FPI server and the family
implementation, code calling through this interface remains
running as a blockable task. This calling code is either the
request server task provided by the family to service the I/O
(for asynchronous I/O requests) or the task of the requester
of the I/O (for certain optimized synchronous requests).

The task-per-request model is advantageously employed
for a family where an I/O request can require continuous
attention from the processor and multiple I/O requests can
be in progress simultaneously. A family that supports dumb,
high bandwidth devices is a good candidate for this model.
In one embodiment, the file manager family uses the task­
per-request model. This programming model requires the
family plug-in code to have tasking knowledge and to use
kernel facilities to synchronize multiple threads of execution
contending for family and system resources.

Unless there are multiple task switches within a family,
the tasking overhead is identical within all of the activation
models. The shortest task path from application to I/O is
completely synchronous because all code runs on the call­
er's task thread.

Providing at least one level of asynchronous call between
an application and an I/O request results in better latency
results from the user perspective. Within the file system, a
task switch at a file manager API level allows a user-visible
application, such as the Finder™, to continue. The file
manager creates an I/O tasks to handle the I/O request, and
that task is used via synchronous calls by the block storage
and SCSI families to complete their part in I/O transaction
processing.
The Device Registry of the Present Invention

The device registry of the present invention comprises an
operating system naming service that stores system infor­
mation. In one embodiment, the device registry is respon­
sible for driver replacement and overloading capability so
that drivers may be updated, as well as for supporting
dynamic driver loading and unloading.

In one embodiment, the device registry of the present
invention is a tree-structured collection of entries, each of
which can contain an arbitrary number of name-value pairs
called properties. Family experts examine the device regis-
try to locate devices or plug-ins available to the family.
Low-level experts, discussed below, describe platform hard­
ware by populating the device registry with device nodes for 60

insertion of devices that will be available for use by appli­
cations.

In one embodiment, the device registry contains a device
subtree pertinent to the I/O architecture of the present
invention. The device tree describes the configuration and 65

connectivity of the hardware in the system. Each entry in the
device tree has properties that describe the hardware repre-

5,915,131
15 16

60

25

30

10. The computer system defined in claim 9 wherein the
first programming interface is responsive to request from
applications and from other program structures.

11. The computer system defined in claim 9 wherein the
first programming interface comprises at least one library for
converting functions into messages.

12. The computer system defined in claim 9 wherein the
first server receives a message corresponding a service
request from the first programming interface, maps the

10 message into a function called by the client, and then calls
the function.

13. The computer system defined in claim 9 wherein the
message comprises a kernel message.

14. A computer system comprising:
a bus;
at least one memory coupled to the bus for storing data

and programming instructions that comprise applica­
tions and an operating system;

a processing unit coupled to the bus and running the
operating system and applications by executing pro­
gramming instructions, wherein the operation system
provides input/output (I/O) services through a tailored
distinct one of plurality of program structures, each
tailored distinct program structure comprising:
a first programming interface for receiving service

requests for a set of I/O services of a first type,
a first server coupled to receive service requests and to

dispatch service requests to the I/O services,
an activation model to define operating environment in

which a service request is to be serviced by the set of
I/O services, and

at least one specific instance of the set of I/O services
that operate within the activation model, wherein one
of the said at least one specific instances comprises
a service that accesses another program structure,
and further wherein said one of said at least one
specific instances communicates to said another pro-
gram structure of a second type using a message
created using a library sent to the server of said
another program structure.

15. The computer system defined in claim 9 wherein two
or more I/O services share code or data.

16. The computer system defined in claim 15 wherein said
two or more I/O services are different types.

17. The computer system defined in claim 9 wherein the
45 program structure further comprises a storage mechanism to

maintain identification of available services to which access
is provided via the first server.

18. A computer implemented method of accessing I/O
services of a first type, said computer implemented method
comprising the steps of:

generating a service request for a first type of I/O services;
a tailored distinct family server, operating in an operating

system environment and dedicated to providing access
to service requests for the first type of I/O service,
receiving and responding to the service request based
on an activation model specific to the first type of I/O
services; and

a processor running an instance of the first type of I/O
services that is interfaces to the file server to satisfy the
service request.

19. The method defined in claim 18 wherein the service
request is generated by an application.

20. The method defined in claim 18 wherein the service
request is generated by an instance of an I/O service running
in the operating system environment.

faces available to access a plurality of separate sets of
computer system services provided through the oper­
ating system of the computer system via service
requests.

2. The computer system defined in claim 3 wherein each 5

of the first plurality of tailored distinct programming inter­
faces are tailored to a type of I/O service provided by each
set of I/O services.

3. A computer system comprising:
a bus;

at least one memory coupled to the bus for storing data
and programming instructions that include applications
and an operating system, wherein the operating system
comprises a plurality of servers, and each of the first
plurality of programming interfaces transfer service 15

requests to one of the plurality of servers, wherein each
of the plurality of servers responds to service requests
from clients of the separate sets of I/O services; and

a processing unit coupled to the bus and running the
operating system and applications by executing pro- 20

graming instructions, wherein an application has a first
plurality of tailored distinct programming interfaces
available to access a plurality of separate sets of I/O
services provided through the operating system via
service requests.

4. The computer system defined in claim 3 wherein
service requests are transferred as messages in a messaging
system.

5. The computer system defined in claim 4 wherein each
of the plurality of servers supports a message port.

6. The computer system defined in claim 3 wherein at
least one of the plurality of servers is responsive to service
requests from applications and from at least one other set of
I/O services.

7. The computer system defined in claim 3 wherein the 35

operating system further comprises a plurality of activation
models, wherein each of the plurality of activation models is
associated with one of the plurality of servers to provide a
runtime environment for the set of I/O services to which
access is provided by said one of the plurality of servers.

8. The computer system defined in claim 7 wherein at 40

least one instance of a service is called by one of the plurality
of servers for execution in an environment set forth by one
of the plurality of activation models.

9. A computer system comprising:
a bus;
at least one memory coupled to the bus for storing data

and programming instructions that comprise applica­
tions and an operating system;

a processing unit coupled to the bus and running the
operating system and applications by executing pro- 50

gramming instructions, wherein the operating system
provides computer system services through a tailored
distinct one of a plurality of program structures, each
tailored distinct program structure comprising:
a first programming interface for receiving service 55

requests for a set of computer system I/O services of
a first type,

a first server coupled to receive service requests and to
dispatch service requests to the computer system I/O
services,

an activation model to define an operating environment
in which a service request is to be serviced by the set
of computer system I/O services, and

at least one specific instance of the set of computer
system I/O services that operate within the activation 65

model.

UNITED STATES PATENT AND TRADEMARK OFFICE

CERTIFICATE OF CORRECTION

PATENT NO.5, 915,131

DATED June 22, 1999

INVENTOR(S) : Knight, et ale

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby
corrected as shown below:

In column 15 at line 14 delete ''the'' and insert -- a __

In column 15 at line 54 delete ":" and insert -- ; --

In column 16 at line 20 delete "operation" and
insert -- operating --

In column 16 at line 58 delete "interfaces" and
insert -- interfaced --

Attest:

Attesting Officer

Signed and Sealed this

Eighteenth Day ofJanuary, 2000

~~
Q. TODD DICKINSON

Commissioner of Patents and Trademarks

