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SUMMARY OF THE INVENTION

FIG. lA is a block diagram of a personal computer system
in accordance with a preferred embodiment;

FIG. lB is a hierarchical layout of a graphic port in
accordance with a preferred embodiment;

FIG. 2 is a block diagram of the architecture in accor
dance with a preferred embodiment;

An object-oriented system is well suited to address the
shortcomings of traditional graphic applications. Object
oriented designs can provide a general purpose framework
that suits the needs of many users, but allows the individual
user to customize and add to the general purpose framework
to address a particular set of requirements. In general, an
object may be characterized by a number of operations and
a state which remembers the effect of these operations.

Thus it is a goal of the present invention to provide a
method and apparatus which facilitates an object-oriented
graphic system. A processor with an attached display, stor
age and object-oriented operating system builds a compo
nent object in the storage of the processor for managing
graphic processing. The processor includes an object for
connecting one or more graphic devices to various objects
responsible for tasks such as graphic accelerators, frame
buffers, page description languages and vector engines. The
system is fully extensible and includes polymorphic pro
cessing built into each of the support objects.

BRIEF DESCRIPTION OF THE DRAWINGS

systems store alpha values. Interactive material editors and
3D paint programs store 3D shading information, while
video production systems may require YUV 4:2:2 pixel
arrays. Hardware clippers store layer tags, and sophisticated

5 systems may store object IDs for hit detection. Moreover,
graphical attributes such as color spaces are amassing con
stant additions, such as PhotoYCCTM. Color matching tech
nology is still evolving and it is yet unclear which quantized
color space is best for recording the visible spectrum as
pixels. Thus, there are a variety of data types in the graphics
world. There are also a variety of storage organization
techniques. To make matters even worse, it seems that every
new application requires a different organization for the
pixel memory. For example, Component Interleaved or
"Chunky" scanline orientations are the prevailing organiza
tion in Macintosh ® video cards, but Component Interleaved
banked switched memory is the trend in video cards targeted
for hosts with small address spaces. Component planar tiles
and component interleaved tiles are the trend in prepress and
electronic paint applications, but output and input devices
which print or scan in multiple passes prefer a component
planar format. Multiresolution or pyramid formats are com
mon for static images that require realctime resampling.
Moreover, images that consume large amounts of memory
may be represented as compressed pixel data which can be
encoded in a multitude of ways.

The variety and growth of graphic applications, data types
and pixel memory manipulations is very large. There is a
requirement for a multipurpose system that can handle all
the known applications and expand to handle those appli
cations that are yet unknown. A single solution is imprac-
tical. Although it may handle every known requirement, it
would be huge and unwieldy. However, if such an applica
tion is downsized, it can no longer handle every application.
Thus, there is a need for a general graphic framework that
suits the needs of many users, but allows the individual user
to customize the general purpose graphic framework.

COPYRIGHT NOTIFICATION

1
OBJECT·ORIENTED GRAPHIC SYSTEM

Portions of this patent application contain materials that
are subject to copyright protection. The copyright owner has
no objection to the facsimile reproduction by anyone of the

10
patent document or the patent disclosure, as it appears in the
Patent and Trademark Office patent file or records, but
otherwise reserves all copyright rights whatsoever.

1. Field of the Invention
This invention generally relates to improvements in com- 15

puter systems and more particularly to a system for enabling
graphic applications using an object-oriented operating sys
tem.

2. Background of the Invention
Computer pictures or images drawn on a computer screen 20

are called computer graphics. Computer graphic systems
store graphics internally in digital form. The picture is
broken up into tiny picture elements or pixels. Thus, a
computer picture or graphic is actually an aggregation of
individual picture elements or pixels. Internally, in the 25

digital world of the computer, each pixel is assigned a set of
digital values which represent the pixel's attributes. A pix
el's attributes may describe its color, intensity and location,
for example. Thus to change the color, intensity or location
of a pixel, one simply changes the digital value for that 30

particular attribute.
Conventional computer graphic systems utilize primitives

known as images, bitmaps or pixel maps to represent com
puter imagery as an aggregation of pixels. These primitives

35
represent a Two Dimensional (2D) array of pixel attributes
and their respective digital values. Typically, such a primi
tive is expressed as a "struct" (data structure) that contains
a pointer to pixel data, a pixel size, scanline size, bounds,
and possibly a reference to a color table. Quite often, the. ~
pIxels are assumed to represent Red, Green, and Blue (RGB)
color, luminance, or indices into a color table. Thus, the
primitive serves double duty as a framebuffer and as a frame
storage specification.

The burgeoning computer graphics industry has settled on 45

a defacto standard for pixel representation. All forms of
images that do not fit into this standard are forced into
second class citizenship. Conventional graphics systems,
however, are nonextendable. They are usually dedicated to
a particular application operating on a specific class of 50

images. This is unacceptable in today's rapidly changing
environment of digital technology. Every day a new appli
cation, and with it the need to process and manipulate new
image types in new ways. Thus, the use of a graphics system
with a nonextensible graphic specification is not only short 55

sighted, it is in a word, obsolete. Graphical applications,
attributes, and organizational requirements for computer
output media are diverse and expanding. Thus, dedicated,
single-purpose graphic systems fail to meet current appli
cation requirements. There is a need for a robust, graphic 60

system that provides a dynamic environment and an exten
sible graphic specification that can expand to include new
applications, new image types and provide for new pixel
manipulations.

For example, two applications rarely require the same set 65

of pixel attributes. Three Dimensional (3D) applications
store z values (depth ordering), while animation and paint

This is a continuation, of application Ser. No. 08/145,
840, filed Nov. 2, 1993, abandoned.
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behavior, represented by its data manipulation functions. In
this way, objects can model concrete things like people and
computers, and they can model abstract concepts like num-
bers or geometrical concepts. The benefits of object tech
nology arise out of three basic principles: encapsulation,
polymorphism and inheritance.

Objects hide, or encapsulate, the internal structure of their
data and the algorithms by which their functions work.
Instead of exposing these implementation details, objects
present interfaces that represent their abstractions cleanly
with no extraneous information. Polymorphism takes encap-
sulation a step further. The idea is many shapes, one inter
face. A software component can make a request of another
component without knowing exactly what that component
is. The component that receives the request interprets it and
determines, according to its variables and data, how to
execute the request. The third principle is inheritance, which
allows developers to reuse pre-existing design and code.
This capability allows developers to avoid creating software
from scratch. Rather, through inheritance, developers derive
subclasses that inherit behaviors, which the developer then
customizes to meet their particular needs.

A prior art approach is to layer objects and class libraries
in a procedural environment. Many application frameworks

25 on the market take this design approach. In this design, there
are one or more object layers on top of a monolithic
operating system. While this approach utilizes all the prin
ciples of encapsulation, polymorphism, and inheritance in
the object layer, and is a substantial improvement over
procedural programming techniques, there are limitations to
this approach. These difficulties arise from the fact that
while it is easy for a developer to reuse their own objects, it
is difficult to use objects from other systems and the devel
oper still needs to reach into the lower, non-object layers

35 with procedural Operating System (OS) calls.
Another aspect of object oriented programming is a

framework approach to application development. One of the
most rational definitions of frameworks came from Ralph E.
Johnson of the University oflllinois and Vincent F. Russo of

40 Purdue. In their 1991 paper, Reusing Object-Oriented
Designs, University of Illinois tech report UIUCDCS91
1696 they offer the following definition: "An abstract class
is a design of a set of objects that collaborate to carry out a
set of responsibilities. Thus, a framework is a set of object

45 classes that collaborate to execute defined sets of computing
responsibilities." From a programming standpoint, frame
works are essentially groups of interconnected object classes
that provide a pre-fabricated structure of a working appli
cation. For example, a user interface framework might

50 provide the support and "default" behavior of drawing
windows, scrollbars, menus, etc. Since frameworks are
based on object technology, this behavior can be inherited
and overridden to allow developers to extend the framework
and create customized solutions in a particular area of

55 expertise. This is a major advantage over traditional pro
gramming since the programmer is not changing the original
code, but rather extending the software. In addition, devel
opers are not blindly working through layers of code
because the framework provides architectural guidance and

60 modeling but at the same time frees them to then supply the
specific actions unique to the problem domain.

From a business perspective, frameworks can be viewed
as a way to encapsulate or embody expertise in a particular
knowledge area. Corporate development organizations,

65 Independent Software Vendors (lSV)s and systems integra
tors have acquired expertise in particular areas, such as
manufacturing, accounting, or currency transactions. This

DETAILED DESCRIPTION OF THE
INVENTION

The invention is preferably practiced in the context of an
operating system resident on a personal computer such as
the IBM® PSI2® or Apple® Macintosh® computer. A
representative hardware environment is depicted in FIG. 1,
which illustrates a typical hardware configuration of a
workstation in accordance with the subject invention having
a central processing unit 10, such as a conventional micro
processor, and a number of other units interconnected via a
system bus 12. The workstation shown in FIG. 1 includes a
Random Access Memory (RAM) 14, Read Only Memory
(ROM) 16, an I/O adapter 18 for connecting peripheral
devices such as disk units 20 to the bus, a user interface
adapter 22 for connecting a keyboard 24, a mouse 26, a
speaker 28, a microphone 32, and/or other user interface
devices such as a touch screen device (not shown) to the bus,
a communication adapter 34 for connecting the workstation
to a data processing network and a display adapter 36 for
connecting the bus to a display device 38. The workstation
has resident thereon an operating system such as the Apple
System/7® operating system.

In a preferred embodiment, the invention is implemented
in the C++ programming language using object oriented
programming techniques. As will be understood by those
skilled in the art, Object-Oriented Programming (OOP)
objects are software entities comprising data structures and
operations on the data. Together, these elements enable
objects to model virtually any real-world entity in terms of
its characteristics, represented by its data elements, and its

FIG. 3 illustrates examples of graphic extensions of
MGraphic in accordance with a preferred embodiment;

FIG. 4 illustrates MGraphics and their corresponding
geometries in accordance with a preferred embodiment;

FIG. 5 is a booch diagram setting forth the flow of control 5

of the graphic system in accordance with a preferred
embodiment;

FIG. 6 illustrates a star graphic object undergoing various
transformations in accordance with a preferred embodiment; 10

FIG. 7 depicts a star moved by an amount in accordance
with a preferred embodiment;

FIG. 8 illustrates rotating-the star about various centers of
rotation in accordance with a preferred embodiment;

FIG. 9 illustrates scaling a star about different centers of 15

scale in accordance with a preferred embodiment;
FIG. 10 shows the effects of scaling an asymmetric star by

(-1.0, 1.0) in accordance with a preferred embodiment;
FIG. 11 illustrates a hierarchical graphic in accordance 20

with a preferred embodiment;
FIG. 12 illustrates a bike graphic in accordance with a

preferred embodiment;
FIG. 13 illustrates a bolt object in accordance with a

preferred embodiment;

FIG. 14 illustrates a hierarchical graphic in accordance
with a preferred embodiment;

FIG. 15 illustrates an object that exists inside the TPoly
gon's Draw call in accordance with a preferred embodiment;

30
FIG. 16 illustrates a graphic hierarchy that supports

sharing of two or more graphics in accordance with a
preferred embodiment; and

FIG. 17 is a flowchart setting forth the detailed logic in
accordance with a preferred embodiment.
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expertise is embodied in their code. Frameworks allow
organizations to capture and package the common charac
teristics of that expertise by embodying it in the organiza
tion's code. First, this allows developers to create or extend
an application that utilizes the expertise, thus the problem 5

gets solved once and the business rules and design are
enforced and used consistently. Also, frameworks and the
embodied expertise behind the frameworks, have a strategic
asset implication for those organizations who have acquired
expertise in vertical markets such as manufacturing, 10
accounting, or bio-technology, and provide a distribution
mechanism for packaging, reselling, and deploying their
expertise, and furthering the progress and dissemination of
technology.

Historically, frameworks have only recently emerged as a 15

mainstream concept on personal computing platforms. This
migration has been assisted by the availability of object
oriented languages, such as C++. Traditionally, C++ was
found mostly on UNIX systems and researcher's worksta
tions, rather than on computers in commercial settings. It is 20

languages such as C++ and other object-oriented languages,
such as Smalltalk and others, that enabled a number of
university and research projects to produce the precursors to
today's commercial frameworks and class libraries. Some
examples of these are InterViews from Stanford University, 25

the Andrew toolkit from Carnegie-Mellon University and
University of Zurich's ET++ framework. Types of frame
works range from application frameworks that assist in
developing the user interface, to lower level frameworks that
provide basic system software services such as communi- 30

cations, printing, file systems support, graphics, etc. Com
mercial examples of application frameworks are MacApp
(Apple), Bedrock (Symantec), OWL (Borland), NeXTStep
App Kit (NeXT), and Smalltalk-80 MVC (parcPlace).

Programming with frameworks requires a new way of 35

thinking for developers accustomed to other kinds of sys
tems. In fact, it is not like "programming" at all in the
traditional sense. In old-style operating systems such as
DOS or UNIX, the developer's own program provides all of
the structure. The operating system provides services 40
through system calls-the developer's program makes the
calls when it needs the service and control returns when the
service has been provided. The program structure is based
on the flow-of-control, which is embodied in the code the
developer writes. When frameworks are used, this is 45

reversed. The developer is no longer responsible for the
flow-of-control. The developer must forego the tendency to
understand programming tasks in term of flow of execution.
Rather, the thinking must be in terms of the responsibilities
of the objects, which must rely on the framework to deter- 50
mine when the tasks should execute. Routines written by the
developer are activated by code the developer did not write
and that the developer never even sees. This flip-flop in
control flow can be a significant psychological barrier for
developers experienced only in procedural programming. 55

Once this is understood, however, framework programming
requires much less work than other types of programming.

In the same way that an application framework provides
the developer with prefab functionality, system frameworks,
such as those included in a preferred embodiment, leverage 60
the same concept by providing system level services, which
developers, such as system programmers, use to subclass!
override to create customized solutions. For example, con
sider a multimedia framework which could provide the
foundation for supporting new and diverse devices such as 65

audio, video, MIDI, animation, etc. The developer that
needed to support a new kind of device would have to write

6
a device driver. To do this with a framework, the developer
only needs to supply the characteristics and behaviors that
are specific to that new device.

The developer in this case supplies an implementation for
certain member functions that will be called by the multi
media framework. An immediate benefit to the developer is
that the generic code needed for each category of device is
already provided by the multimedia framework. This means
less code for the device driver developer to write, test, and
debug. Another example of using system frameworks would
be to have separate UO frameworks for SCSI devices,
NuBus cards, and graphics devices. Because there is inher
ited functionality, each framework provides support for
common functionality found in its device category. Other
developers could then depend on these consistent interfaces
for implementing other kinds of devices.

A preferred embodiment takes the concept of frameworks
and applies it throughout the entire system. For the com
mercial or corporate developer, systems integrator, or OEM,
this means all the advantages that have been illustrated for
a framework such as MacApp can be leveraged not only at
the application level for such things as text and user inter
faces, but also at the system level, for services such as
graphics, multimedia, file systems, UO, testing, etc. Appli
cation creation in the architecture of a preferred embodiment
will essentially be like writing domain-specific pieces that
adhere to the framework protocol. In this manner, the whole
concept of programming changes. Instead of writing line
after line of code that calls multiple API hierarchies, soft
ware will be developed by deriving classes from the preex
isting frameworks within this environment, and then adding
new behavior and/or overriding inherited behavior as
desired. Thus, the developer's application becomes the
collection ofcode that is written and shared with all the other
framework applications. This is a powerful concept because
developers will be able to build on each other's work. This
also provides the developer the flexibility to customize as
much or as little as needed. Some frameworks will be used
just as they are. In some cases, the amount of customization
will be minimal, so the piece the developer plugs in will be
small. In other cases, the developer may make very exten
sive modifications and create something completely new.

In a preferred embodiment, as shown in FIG. 1, a multi
media data routing system manages the movement of mul
timedia information through the computer system, while
multiple media components resident in the RAM 14, and
under the control of the CPU 10, or externally attached via
the bus 12 or communication adapter 34, are responsible for
presenting multimedia information. No central player is
necessary to coordinate or manage the overall processing of
the system. This architecture provides flexibility and pro
vides for increased extensibility as new media types are
added. A preferred embodiment provides an object-oriented
graphic system. The object-oriented operating system com
prises a number of objects that are clearly delimited parts or
functions of the system. Each object contains information
about itself and a set of operations that it can perform on its
information or information passed to it. For example, an
object could be named WOMAN. The information con
tained in the object WOMAN, or its attributes, might be age,
address, and occupation. These attributes describe the object
WOMAN. The object also contains a set of operations that
it can perform on the information it contains. Thus,
WOMAN might be able to perform an operation to change
occupations from a doctor to a lawyer.

Objects interact by sending messages to each other. These
messages stimulate the receiving object to take some action,
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that is, perform one or more operations. In the present
invention there are many communicating objects. Some of
the objects have common characteristics and are grouped
together into a class. A class is a template that enables the
creation of new objects that contain the same information 5
and operations as other members of the same class. An
object created from a certain class is called an instance of
that class. The class defines the operations and information
initially contained in an instance, while the current state of
the instance is defined by the operations performed on the 10
instance. Thus, while all instances of a given class are
created equal, subsequent operations can make each instance
a unique object.

Polymorphism refers to object-oriented processing in
which a sender of a stimulus or message is not required to 15

know the receiving instance's class. The sender need only
know that the receiver can perform a certain operation,
without regard to which object performs the operation or
what class to which it belongs. Instances inherit the
attributes of their class. Thus, by modifying the attribute of 20

a parent class, the attributes of the various. instances are
modified as well, and the changes are inherited by the
subclasses. New classes can be created by describing modi
fications to existing classes. The new class inherits the
attributes of its class and the user can add anything which is 25

unique to the new class. Thus, one can define a class by
simply stating how the new class or object differs from its
parent class or object. Classes that fall below another class
in the inheritance hierarchy are called descendants orchil
dren of the parent class from which they descend and inherit. 30

In this polymorphic environment, the receiving object is
responsible for determining which operation to perform
upon receiving a stimulus message. An operation is a
function or transformation that may be applied to or by
objects in a class. The stimulating object needs to know very 35

little about the receiving object which simplifies execution
of operations. Each object need only know how to perform
its own operations, and the appropriate call for performing
those operations a particular object cannot perform.

When the same operation may apply to many different 40
classes, it is a polymorphic operation. The same operation
takes on a different form in a variety of different classes. A
method is the implementation of a particular operation for a
given class. For example, the class Document may contain
an operation called Read. Depending on the data type of the 45

document, for example, ASCII versus BINARY, a different
method might be used to perform the Read operation. Thus
while both methods logically perform the same task, Read,
and are thus called by the same name, Read, they may in fact
be different methods implemented by a different piece of 50

executable code. While the operation Read may have meth
ods in several classes, it maintains the same number and
types of arguments, that is, its signature remains the same.
Subclasses allow a user to tailor the general purpose frame
work. It allows for different quantization tradeoffs, sets of 55

pixel attributes, and different pixel memory organizations.
Each subclass can encapsulate the knowledge of how to
allocate, manage, stream, translate, and modify its own class
of pixel data. All subsystems of a preferred embodiment use
polymorphic access mechanisms, which enable a user to 60

extend buffer types that can be rendered to or copied.
Fortunately, some commonalty exists among the various

types of buffers. As it turns out, there are eight basic
functions or categories that are necessary to satisfy the
majority of client needs. Most clients want polymorphic 65

management and the ability to specify the relationship
between discrete and continuous space. Clients want to
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characterize color capabilities for use in accurate color
reproduction. Clients want mechanisms for pixel memory
alteration in the form of Get and SetPixel, specialized "blit
loops" tailored for scan converting clients, BitBit, and
CopyImage. Clients want mechanisms to supply clients with
variants which match a key formed from the combination of
client supplied attributes. Clients desire the ability to per
form polymorphic queries regarding traits or stored
attributes. Clients require mechanisms allowing clients to
polymorphically create, maintain, and query buffer caches.
And finally, clients require mechanisms which allow them to
polymorphically create, and maintain correlated back
buffers.

Graphic Application Programming Interface (API)

The basic components of a graphic system include a fixed
set of Geometric Primitives: Point, Rectangle, Line, Curve,
Polygon, Polyline, Area in 2D,Line, Polyline, Curve and
Surface in 3D. This set of geometry is not intend to be user
extensible. This limits the complexity of the lower level
graphic devices, and provides a "contract" between the
user-level API and the low level device for consistent data.
Discretized data sets: which include 2D raster images with
a number of possible components and triangulated 3D
datasets. High level modeling tools: that can express hier
archical groups of graphic objects. Transforms: these objects
represent the operations available with a traditional 3x3 (in
2D) or 4x4 (in 3D) matrices to rotate, scale, translate, etc.
objects. Bundles: these objects encapsulate the appearance
of the geometry. Standard attributes include (2D & 3D)
frame and/or fill color, pen thickness, dash patterns, etc. In
3D, bundles also define shading attributes. Custom attributes
may be specified via a keyword/value pair. All numeric
values are expressed in IEEE standard double precision
floating point in the graphic system. Graphic Ports: a graphic
port is an application-level view that encapsulates the state
of the application. The graphic port re-routes any draw calls
to an appropriate one of a number of possible devices
(monitors, off screen frame buffers, PostScriptPrinter on a
network, a window, etc.). Graphical "state" (current trans
form, bundle, clipping region, etc) is managed at the port
level. However, at the device level the system is "stateless".
In other words, the complete state for a particular rendering
operation is presented to the device when that rendering
occurs. Note that a device may turn around and invoke other
devices. For example, a device for the entire desktop may
first decide which screen the geometry falls on, and then
invoke the render call for that particular screen.

Architectural Introduction

In past graphics architectures, a graphic typically stores its
state (such as color, transfer mode, clip area, etc.) privately.
When asked to draw, the graphic procedurally copies these
state variables into a graphic port, where they are accessed
by the rendering code. Thus, the graphic's state is available
only during this explicit drawing operation. This is not
object-oriented, and is a restriction a modern graphic system
cannot afford to make. A preferred embodiment provides a
framework for a graphic to store its state. The framework
supports a "don't call us, we'll call you" architecture in
which clients can get access to the graphic state outside the
context of any particular function. This is the purpose of the
graphic port class. It is an abstract class that defines the
interface for accessing the state variables. Concrete sub
classes define the actual storage and concatenation behavior
of the state variables.
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Graphic Port Class

A design employing graphic port classes groups the
graphic states into four different groups, which then are
grouped into a single class called graphic port. The four
"sub-states" are TGratBundle, TCoordinateSystem, TClip- 5

Boundary, and TSceneBundle. A graphic port object can be
referenced by other classes that need access to the full
graphic state. Additionally, a child's graphic state can be
concatenated to its parent's graphic port object, producing a
new graphic port object. FIG. IB is a hierarchical layout of 10

a graphic port in accordance with a preferred embodiment.
A graphic port class also contains methods to access a device
and a device cache. GetDevice returns a pointer to the device
to which rendering is done. Typically, this device is inherited
from the parent graphic port. GetCache returns a pointer to 15
the cache used by the device to cache devicedependent
objects. This cache must have been created by the device at
an earlier time. The main purpose for subclassing graphic
port and the four sub-states is to define how storage and
concatenation of the graphic state, device, and device cache 20
is done. A simpler, flat group of state variables would not be
flexible enough to support customization of state concatena
tion for a subset of the state variables. Also, the sub-states
assist in splitting the state variables into commonly used
groups. For instance, a simple graphic typically needs only 25
a TGratBundle; more complex graphic objects may need a
matrix and possibly a clip area.

A graphic class, such as MGraphic, must describe itself to
a TGratPortDevice in terms of the basic set of geometries,
and each geometry must have a graphic port object associ- 30

ated with the geometry. The graphic port allows a graphic
object to conveniently "dump" its contents into a TGrafDe
vice object. This is accomplished by supplying a set of draw

10
Modeling Layer

Above the graphic port and geometry layers there is an
optional modeling layer. A preferred embodiment provides a
modeling layer, but an application can override the default.
The default modeling layer is called a "MGraphic" layer. An
MGraphic object encapsulates both geometry and appear
ance (a bundle). To render an MGraphic, a draw method is
used. This method takes the graphic port the MGraphic is
drawn into as an argument. The MGraphic draw method
turns this information into a graphic port call. The goal
behind separating the MGraphic layer from-the graphic port
/ geometry layer is to avoid a rigid structure suited to only
one type of database. If the structure provided by the
MGraphic objects does not satisfy the client's requirements,
the architecture still permits a different data structure to be
used, as long as it can be expressed in terms of primitive
geometries, bundles, and transforms.

MGRAPIDC LAYER

The graphic system provides two distinct ways of ren
dering geometries on a device. An application can draw the
geometry directly to the device. The class graphic port
supports a well defined, but fixed set of 2D geometries. It
supports these by a set of overloaded draw methods. When
using this approach, attributes and transformation matrices
are not associated with geometry, making it suitable for
immediate mode rendering only. The following pseudo code
is an example of how an application may use this approach
to create a red line.

create a displayPort an instance of TGrafPort
TGLine line( TGPoint( 0.0, 0.0 , TGPoint( 1.0, 1.0 »; IICreates a line
TGrafBundle redColor( TRGBColor( 1.0, 0.0, 0.0 »; IICreates a red color bundle
displayPort->Draw(line, redColor); I/Render the line on to the GrafPort

functions in the graphic port class that mirrors a set of render
functions in the TGrafDevice class. Each draw function 45
takes a geometry and passes the geometry and the contained
graphic state to the appropriate render call in the device. For
convenience, an overriding bundle and model matrix are
also passed.

FlG. 2 is a block diagram of the architecture in accor- 50

dance with a preferred embodiment. In the preferred
embodiment, a modeling layer 200 generates calls to a
Graphic port 210 using the API 210 described above. This
GraphPort interface accepts only a specific, fixed set of
primitives forming a "contract" 250 between the user level 55

API and the device level API 240. The graphic port captures
state information including transform, appearance
("bundle"), and clipping into a polymorphic cache 220 that
is used across multiple types of devices. For each render call,
the geometry and all relevant accumulated state information 60

230 is presented to the device via a polymorphic graphic
device object 240. A device managed by the graphic device
object 240 may take the form of a page description language
260 (such as postscript), a vector plotting device 270, a
device with custom electronic hardware for rendering geo- 65

metric primitives 280, a traditional framebuffer 290, or any
other graphic device such as a display, printer or plotter.

Alternatively, an application can draw the geometry via a
higher level abstraction called MGraphic. This is a retained
mode approach to rendering of graphical primitives.
MGraphic is an abstract base class for representing the 2D
primitives of the graphic system. It is a higher level mani
festation of graphical objects which can be held in a col
lection, be transformed and rendered to a graphic device
(TGrafDevice). Each MGraphic object holds a set of its own
attributes and provides streaming capability (with some
restrictions on some of its subclasses). Hit testing methods
provide a mechanism for direct manipulation of MGraphic
objects such as picking. MGraphic provides extensibility
through subclassing that is one of the key features of
MGraphics. A particular subclass of MGraphic also creates
hierarchies ofMGraphic objects and provides the capability
to extend the graphic system. FlG. 3 illustrates some
examples of graphic extensions of MGraphic in accordance
with a preferred embodiment.

MGraphic is a utility class for applications to hold geom
etry related data that includes geometry definition, graf
bundle (set of graphical attributes defining the representation
of the geometry) and a set of transformation methods.
MGraphic objects also hold any other information required
by a user and will copy and stream this user specific data to
an application. This class may not be needed for applications



5,455,599

MGraphic Attribute Bundles

As seen in FlG. 5, all MGraphic objects have an associ
ated attribute bundle, TGrafBundle. This bundle holds the
attribute information for the graphic object such as its color,

60 pens, filled or framed. When an MGraphic is created, by
default, the GrafBundle object is set to NIL. If GrafBundle
is equal to a NIL, then the geometry is rendered by a default
mechanism. When used in a hierarchy, the parent bundle
must be concatenated with the child's bundle before ren-

65 dering the child. If a child's bundle is NIL, then the child
uses the parent's bundle for rendering. For example, in the
hierarchy in FlG. 12, object E will inherit the attributes of

12
having to recreate the MGraphic. All transformation meth
ods apply only relative transformation to the MGraphic.
Methods ScaleBy, MoveBy and RotateBy are special cases
of the more general method TransformBy. Subclasses apply

5 the transform directly to the geometry they own to directly
change the geometry.

All MGraphic subclasses are closed to arbitrary transfor
mations i.e. a TGPolygon when transformed by an arbitrary
transformation will still be a TGPolygon. However, certain

10 geometries do not possess this closure property. For
example, a rectangle, when transformed by a perspective
matrix, is no longer a rectangle and has no definition for
either width or height. The original specification of the
rectangle is insufficient to describe the transformed version

15 of the rectangle. All MGraphic subclasses must be closed to
arbitrary transformations. Since all transformations are rela
tive, a transformed MGraphic cannot be "untransformed" by
passing an identity matrix to the MGraphic method Trans-
formByO.

FlG. 7 depicts a star moved by an amount in accordance
with a preferred embodiment. This method moves the
MGraphic by an amount relative to its current position. FlG.
8 illustrates rotating the star about various centers of rotation
in accordance with a preferred embodiment. The amount of

25 rotation is specified in degrees and is always clockwise.
However, subclasses can override the default and optimize
for a specific geometry and usage. FlG. 9 illustrates scaling
a star about different centers of scale in accordance with a
preferred embodiment. The factor is a vector which allows

30 non-uniform scaling namely in X and Y. In FlG. 9 the X
coordinate of the parameter amount will be (new x/old x)
and the Y coordinate will be (new y/old y). In case of
uniform scaling both the X and the Y coordinate will be the
same. FlG. 9 also shows scaling about different centers of

35 scale.

Negative scale factors are allowed, and the effects of
negative scale factors is the same as mirroring. Scaling by
-1.0 in the X direction is the same as mirroring about the Y

40 axis while a negative scale factor in the Y direction is the
same as mirroring about the X axis. FlG. 10 shows the
effects of scaling an asymmetric star by (-1.0, 1.0) in
accordance with a preferred embodiment. Like RotateByO
and TranslateByO, the effect of this transform is the same as

45 creating a scaling matrix and passing it to TransformByO
and this is the default implementation. Subclasses can over
ride this default implementation and optimize for a specific
geometry and usage. TransformBy is a pure virtual member
function that transforms the MGraphic by matrix. All con-

50 crete subclasses of MGraphics must define. this member
function. Subclasses that own a TGrafMatrix for manipula
tion must post multiply the parameter matrix with the Jocal
matrix for proper effect.

11

MDrawable Drawing Protocol

MGraphic Transformations

FlG. 6 illustrates a star undergoing various transforma
tions in accordance with a preferred embodiment. Transfor
mations can alter an MGraphic's shape, by scaling or
perspective transformation, and position, by rotating and
moving. The transformation methods allow applications to
change an existing MGraphic's shape and location without

All MGraphics (2D and 3D) draw onto the graphic port
which is passed to the MGraphic as a parameter. Besides the
state information, which is encapsulated by the GrafPort, all
other information is contained in the MGraphic object. This
information includes the geometry, attribute bundle and any
transformation information. All MGraphics draw synchro
nously and do not handle updating or animating require
ments. It is up to the client to create subclasses. When
drawing 2D and 3D primitives as a collection, such as in a
list of MDrawable objects, the drawing sequence is the same
as it would be when 2D and 3D draw calls are made on the
graphic port. Thus, drawing a 2D polygon, a 3D box and a 55

2D ellipse will render differently depending upon the order
in which they are rendered. The graphic port passed to this
method is a passive iterator which is acted upon by the
MGraphic to which it is passed.

interested in pure immediate mode rendering. For immediate
mode rendering of the primitives the applications render
geometry by passing an appropriate geometry object, a
grafbundle and a transformation matrix to the graphic port.
FlG. 4 illustrates MGraphics and their corresponding geom
etries in accordance with a preferred embodiment. FlG. 5 is
a Booch diagram setting forth the flow of control of the
graphic system in accordance with a preferred embodiment.
In the Booch diagram of FlG. 5, "clouds" depicted with
dashed lines indicate classes or aggregations of classes (e.g.
application 500). Arrows connecting classes are directed
from subclass to superclass and indicate a hierarchy includ
ing the properties of encapsulation, inheritance and poly
morphism as is well understood in object technology and
graphic notations accepted in the art which are illustrative
thereof. Double lines indicate use of the class in the imple
mentation or interface. A circle at one end of a line segment
indicates containment or use in the class with the circle on
the end of the line segment. For a more complete description
of this notation, reference can be made to "Object Oriented 20

Design" by Grady Booch, published by the Benjamin!
Cummings Publishing Co., Copyright 1991. The current
MGraphic 520 inherits from MDrawable 510 which inherits
from MCollectible 500 to inherit the streaming, versioning
and other behaviors of MCollectible 500. Each MGraphic
520 also has a bundle, TGrafBundle 530, which holds a set
of attributes. These attributes are used by the MGraphic at
rendering time.

The MGraphic abstract base class represents only 2D
graphical primitives. In general it has been observed that 2D
and 3D primitives do not belong to a common set unless
users clear the 3D plane on which 2D primitives lie. 2D and
3D primitives have different coordinate systems and mixing
them would confuse users. Clients can mix the two sets
based upon their specific application requirements. The class
MDrawable 510 is the abstract base class common to both
MGraphic 520 and MGraphic3D abstracting the common
drawing behavior of the two classes. This class is useful for
clients interested only in the draw method and do not require
overloaded functionality for both 2D and 3D.
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CreateGraphicIteratorO

TGraphicGroup

GraphicGroup Iterator

Graphic Group provides a concrete implementation for
iterating its children. The Graphic Iterator created iterates
only one level. Clients interested in iterating more than one
level deep can do so by creating iterators on subsequent
TGraphicGroups.

Attribute and Transformation Hierarchy

The graphic system provides a concrete subclass of
TBaseGraphicGroup, namely TGraphicGroup, which sup
ports creation of trees. TGraphicGroup creates a collection

25 of MGraphic objects forming a group. As each of the
MGraphic objects can be a TGraphicGroup, clients can
create a hierarchy of objects. FIG. 12 is an example of a
hierarchy created by TGraphicGroup. FIG. 12 contains
TGraphicGroups A, B and C. D, E, F and G are different

30 simple MGraphics encapsulating more than one geometry. A
has references to B, C and F. B refers to D while C refers to
G. Group C also refers to the MGraphic E. FIG. 12 can be
considered as an over simplified bike, where A refers to
MGraphic F-the body of bike, and groups B and C which

35 refer to the transformations associated with the rear and the
front wheel respectively. The two wheels are represented by
the primitive geometries D and G. E represents the handle
bar of the bike. Moving node C will move both the front
wheel and the handle-bar, and moving node A will move the

40 entire bike.
While applying a transformation matrix to the children at

the time of rendering, the group creates a temporary Graf
Port object and concatenates its matrix with that stored in the
GrafPort. This new GrafPort is used to render its children

45 and is destroyed once the child is completely rendered. The
GrafPort objects are created on the stack. TGraphicGroup
does not allow its children to have more than one parent in
a team. TGraphicGroup inherits directly from MGraphic and
thus each of the nodes own its own grafbundle and can affect

50 its own side of the hierarchy. The destructor of TGraphic
Group destroys itself and does not destroy its children. It is
up to an application to keep track of references and destroy
MGraphic objects when they are not referenced.

classes provide an implementation. Subclasses which desire
a shield for their children may return an empty iterator when
this member function is invoked.
Protocol: TGraphicIterator*

5 const=O
This method creates a Graphic iterator which iterates

through the first level of a hierarchy. For example in FIG. 12,
the graphic iterator created a concrete subclass to iterate
over B, C and F. To iterate further, iterators must be created

10 for both B and C as these are TBaseGraphicGroups. All
subclasses creating hierarchies must provide a concrete
implementation.

TGraphiclterator is an active iterator that facilitates the
iteration over the children of a TBaseGraphicGroup.

TGraphiclterator methods include:
const MGraphic *TGraphicIterator::FirstO
const MGraphic *TGraphiclterator::NextO
const MGraphic *TGraphicIterator::LastO

virtual void AdoptBundle(TGrafBundle *bundle)
MGraphic adopts the bundle.
If an MGraphic object already holds a bundle, it is

deleted, and the new bundle is attached. As pointers are
passed, it is important for the clients not to keep references
to the bundle passed as the parameter. The MGraphic object
will delete the bundle when it gets destroyed.
virtual const TGrafBundle* GetBundleO const

This method allows users to inquire a bundle and then
subsequently inquire its attributes by iterating through them.
This method provides an alias to the bundle stored in the
MGraphic object.
virtual TGrafBundle* OrphanBundleO

This method returns a bundle to a calling application for
its use. Once this method is called, it is the calling applica
tion's responsibility to delete the bundle unless it is adopted
again by an MGraphic object. When orphaned, the
MGraphic bundle is set to NIL, and when the graphic is
subsequently drawn, the MGraphic uses the default mecha
nism of attributes/bundles for its parent's bundle. This kind
of MGraphic subclass references other MGraphic objects.
Although all manipulative behavior of complex MGraphic
objects is similar to a MGraphic object, these objects do not
completely encapsulate MGraphic objects they refer to. Of
the subclasses supported by a preferred embodiment, the one
that falls in this category is TGraphicGroup. TGraphicGroup
descends from the abstract base class TBaseGraphicGroup 55
which makes available polymorphically the methods to
create iterators for traversing groups. It is important for
clients creating groups or hierarchies to descend from the
base class TBaseGraphicGroup for making available the
iterator polymorphically. FIG. 11 illustrates the class hier- 60

archy in accordance with a preferred embodiment.

TBaseGraphicGroup Iterator Support

both A, C and E before it is rendered, and a change of
attribute in A will trickle down to all its children namely B,
C D, E, G and D.

It is important to note that a bundle has a significant
amount of information associated with it. Thus, copying of
the bundle is generally avoided. Once the bundle is adopted,
MGraphic object will take full responsibility to properly
destroy the bundle when the MGraphic object is destroyed.
When a client wishes to modify an attribute of an MGraphic
object, they do so by orphaning the bundle, changing the
attribute, and then having the MGraphic adopt the bundle.
Also, all caches that depend upon bundles must be invali
dated when the bundle is adopted or orphaned. When an
object orphans data, it returns a pointer to the data and takes
no further data management responsibility for the data. 15

When an object adopts data, it takes in the pointer to the
storage and assumes full responsibility for the storage.
Default implementations of all bundle related member func
tions has been provided in the base MGraphic class and
subclasses need not override this functionality, unless the 20

subclasses have an attribute based cache which needs to be
invalidated or updated whenever the bundle is adopted and
orphaned. For example, the loose fit bounds, when cached,
need to be invalidated (or reevaluated) when the attributes
change.

C++ Application Program Interfaces (API) for Bundle
Management

Since GraphicGroup facilitates creation of hierarchies,
support for iterating the hierarchy is built into this base class
and is available polymorphically. This method is virtual in
the abstract base class TBaseGraphicGroup and all sub-

Each TGraphicGroup, if it so chooses, defines its own
65 attributes and transformation. By default, an attribute bundle

is NIL and the transformation matrix is set to the identity
matrix. As TGraphicGroup is a complex MGraphic, it has
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references to other MGraphics, and its children. By defini
tion, each of the children must inherit the attribute traits and
transformations of its parent. However, since each child can
contain multiple references, it inherits these attributes by
concatenating the parents information, without modifying its 5
own, at the time of rendering. The concatenation of these
attributes is achieved at the time of the Draw call. Both the
attribute and the matrix are concatenated with the TGrafPort
object which is passed as a parameter to the Draw call. In
FIG. 12, attributes and transformations of object A (body of 10
bike) are concatenated with the GrafPort object passed to A
(as parameter to member function Draw) and a new GrafPort
object, APortObject, is created on the stack. APortObject is
passed to object C which concatenates its state and creates
a new port object, CPortObject. The new CPortObject is

16
passed to object E to be rendered. Object E concatenates its
state with CPortObject and renders itselfusing the new state.

MGRAPHlC EXAMPLE

As an example, a graphic is subclassed from MGraphic to
create a special 2D primitive which corresponds to a top
view of a bolt. This class stores a transformation matrix for
a local coordinate system, and is a very simple example
without taking into account performance and efficiency.
FIG. 13 illustrates a bolt object in accordance with a
preferred embodiment. The code below is a C++ source
listing that completely defines the bolt object in accordance
with a preferred embodiment.

class TBoItTop : public MGrapbic {
public:

TBoItTop(GCoord BoltDiameter, GCoord outerradius, TGPoint center);
TBoItTop(const TBoItTop&);
TBoltTop& operator-= (const TBoltTop&);
virtual void Draw(TGrafPort&) const;
virtual TGPoint GetAlignrnentBasePointO const;
virtual TGRect GetLooseFitBoundsO const;
virtual TGRect GetGeometricBoundsO const;
virtual void TransforrnBy(const TGrafmatrix& matrix);
virtual Boolean Find(TGrafSearcher& searcher) const;

private:
TBoltTopO; / /For streaming purposes only.
TGrafMatrix fMatrix;
TGPolygon fPolygon; / / Tbis is the outer polygon
TGEllipse fCircle; t / Tbis is the inner circle
void ComputePolygon(GCoord outerRad, int numOfSides);

};
TBoltTop::TBoitTopO
{
}
TBoltTop::TBoltTop(GCoord boltDia, GCoord outerDia, TGPoint center)

: fCircle(boltDia, center)

calculate the hexagon polygon from these paramters
The side of the polygon = outerDiameter / 2.0
TGPointArray polygonPoints(6);
TGPoint trnpPoint;
for (unsigned long i = 0, theta = O.O;i < 6;i +1-,

theta += kPi/6) {
trnpPoint.fX = center.fX + outerDia * sin(theta);
trnpPoint.fY = center.fY + outerDia * cos(theta);
polygonPoints.SetPoint(i, trnpPoint);

}
voidTBoltTop::Draw(TGrafPort &port) const
{

/*
* draw the geometry with the Graftlundle and the matris
* associated with this primitive
* /
port.Draw(fPolygon, fGrafBundle, fMatrix);
port.Draw(fCircie, fGrafBundle, fMatrix);
/*
* If there are a large number of primitives with same attributes
* it is efficient to construct a local port and then render
* geometries into this local port.
* The semantics will be as:

*
* TConcatenatedGrafPort newPort(port, fGrafBundle, fMatrix);
* TConcatenatedGrafPort is a port that concatenates bundle and
* matrix with the state information of the old port.

*
* newPort.Draw(fPolygon);
* newPort.Draw(fCircle);
*/

}
TGPoint TBoltTop::GetAlignrnentBasePointO const
{

/ / The alignment point is the center of the circle.
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-continued

TGPoint point;
point.x = fCircle.GetCenterXO;
point.y =fCirc1e.GetCenterYO;
return point;

}
TGRect TBoltTop::GetLooseFitBoundsO const
{

TGRect bounds;
I I Get bounds of the polygon
I I pass the bounds to the bundle for altering.
GetGeometricBounds(bounds);
fGrafBundle->AlterBounds(bounds);
return bounds;

}
TGRect TBoltTop::GetGeometricBoundsO const
{

I I Get bounds of the polygon
I I pass the bounds to the bundle for altering.
bounds = fPolygon.GetBoundsO;

}
void TBoltTop::TransformBy(const TGrafMatrix& matrix)
{

fMatrix.ConcatWith(matrix);
}
void TGrafSearch::EFindResult TBoltTop::Find(TGrafSearch& search) const
{

if (!search.find(fPolygon, fgrafBundle, fMatrix» {
return search.find(fCirc1e, fGrafBundle, fMatrix);

}
return TGrafSearch::kDoneSearching;

30
cessing is required for particular types of graphic hierar-
chies. For instance, a graphic hierarchy that allows a par
ticular graphic to be shared by two or more other graphics
must implement transient concatenation because the shared
graphic has multiple parents. FIG. 16 illustrates a graphic

35 hierarchy that supports sharing of two or more graphics in
accordance with a preferred embodiment. The curve object
in this example is shared by graphics B and C. Thus, the
concatenation must be transient because the results of the
concatenation will be different depending on the branch

40 taken (B or C).

Graphic objects in a persistent hierarchy require knowl
edge ofparental infonnation, allowing a graphic to be drawn
using its parent's state without drawing its parent. A graphic

45 in the hierarchy cannot be shared by multiple parents. Extra
semantics, such as a ConcatenateWithParent call and a Draw
call with no parameters, must be added to the graphic classes
used in the hierarchy. A graphic may use a graphic port
subclass that stores more state, such as a coordinate system

50 and clip boundary. Thus, each graphic may also want to keep
its own private device cache.

FIG. 17 is a flowchart of the detailed logic in accordance
with a preferred embodiment. Processing commences at
function block 1700 where a modeling layer object com-

55 municates with the grafport object 1740 with a fixed set of
geometric objects 1730 and an extensible set of graphic
attribute objects 1720. The grafport object 1740 passes the
geometric object 1730 and graphic attributes 1720 to a
polymorphic graphic device object 1750 which manages

60 devices (hardware and software) such as a page description
language object 1760, a vector engine object 1770, a graphic
accelerator object 1780, a frame buffer object 1790; or more
traditional graphic devices such as displays, printers or
plotters as depicted in FIG. 1.

While the invention has been described in tenns of a
single preferred embodiment, those skilled in the art will
recognize that the invention can be practiced with modifi-

Graphic State Concatenation

FIG. 14 illustrates a hierarchical graphic in accordance
with a preferred embodiment. The graphic consists of a
polygon and an ellipse in a group. Each graphic in the
hierarchy can store a graphic state. For instance, the polygon
and the ellipse each have a TGrafBundle, while the TGroup
stores no graphic state. This architecture is easily understood
until hierarchical states for matrices are considered. To
produce the correct geometry matrix, a graphic's local view
matrix must be concatenated with the view matrix of its
parent. This concatenated matrix may then be cached by the
graphic that provided it. A graphic's state must be "concat
enated" to that of its parent graphic, producing a new, full set
of states that applies to the graphic. When TGroup::Draw is
called, its parent's graphic port object is passed in. Since the
TGroup has no state of its own, it doesn't perfonn any
concatenation. It simply passes its parent's graphic port
object to the polygon's Draw call and then to the ellipse's
Draw call.

The polygon has a TGrafBundle object that must be
concatenated to its parent's graphic port object. This is
facilitated by creating a local graphic port subclass that can
perfonn this concatenation. It then makes a call to
TBundleConcatenator::Draw. FIG. 15 illustrates an object
that exists inside the TPolygon's Draw call in accordance
with a preferred embodiment. Because the TBundleConcat- 65

enator object is created locally to a TPolygon's Draw call,
this type of concatenation is transient in nature. This pro-

The Device Cache

The device cache can potentially be a large object, so care
must be taken to ensure that device caches do not proliferate
throughout the system unexpectedly. If the same base,
GratPort, is utilized for a number of hierarchies, the hier
archies would automatically share the cache in the base
GratPort.
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(d) passing the state information and the rendering infor
mation to a graphic device object for output on the
graphic device.

13. The method as recited in claim 12, including state
5 information with transform, appearance and clipping infor

mation.
14. The method as recited in claim 12, wherein the

graphic device is a software or a hardware graphic processor.
15. An apparatus for graphic processing, comprising:

(a) a processor,

(b) a storage attached to and under the control of the
processor;

(c) a graphic device attached to and under the control of
the processor;

(d) a modeling layer object in the storage;

(e) a grafport object in the storage;

(0 means for generating calls from the modeling layer
object to the grafport object using a predefined set of
graphic primitives;

(g) means for capturing state information and rendering
information at the grafport object; and

(h) means for passing the state information and the
rendering information to a graphic device object for
output on the graphic device.

16. The apparatus as recited in claim 15, wherein the state
information includes transform, appearance and clipping
information.

17. The apparatus as recited in claim 15, wherein the
graphic device is a vector engine.

18. The apparatus as recited in claim 15, wherein the
graphic device is a graphic accelerator.

19. The apparatus as recited in claim 15, wherein the
graphic device is a frame buffer.

20. The apparatus as recited in claim 15, wherein the
graphic device is a plotter.

21. The apparatus as recited in claim 15, wherein the
graphic device is a printer.

22. The apparatus as recited in claim 15, wherein the
graphic device is a display.

23. The apparatus as recited in claim 15, wherein the
graphic device is a postscript processor.

24. The apparatus as recited in claim 15, wherein the
modeling layer object includes at least one geometric object
and at least one graphic attribute object.

25. The apparatus as recited in claim 15, wherein an
object includes a method and data.

26. The apparatus as recited in claim 25, wherein the
object is polymorphic and extensible.

10

15

cation within the spirit and scope of the appended claims.
Having thus described our invention, what we claim as

new, and desire to secure by Letters Patent is:
1. An object-oriented graphic system, comprising:
(a) a processor;
(b) a storage under the control of and attached to the

processor;
(c) one or more graphic devices under the control of and

attached to the processor;
(d) a grafport object in the storage of the processor;
(e) a graphic device object in the storage of the processor

for managing one of the one or more graphic devices;
(1) a graphic object in the storage of the processor for

managing graphic processing; and
(g) means for connecting the graphic device object to the

grafport object to output graphic information on the one
of the one or more graphic devices under the control of
the graphic object.

2. A system as recited in claim 1, including a graphic 20

accelerator graphic device object.
3. A system as recited in claim 1, including a frame buffer

graphic device object.
4. A system as recited in claim 1, including a page

description language graphic device object. 25

5. A system as recited in claim 1, including a vector
engine graphic device object.

6. A system as recited in claim 1, wherein the grafport
object, the graphic device object and the graphic object are
polymorphic. 30

7. A system as recited in claim 1, wherein the grafport
object, the graphic device object and the graphic object are
fully extensible.

8. A system as recited in claim 1, including a modeling
layer in the graphic object. 35

9. A system as recited in claim 8, including a geometric
object and a graphic attribute object in the modeling layer.

10. A system as recited in claim 1, wherein the geometric
object includes geometry for the graphic information.

11. A system as recited in claim 1, wherein the graphic 40

device objects include displays, printers and plotters.
12. A method for graphic processing in an object-oriented

operating system resident on a computer with a processor, a
storage attached to and under the control of the processor
and a graphic device attached to and under the control of the 45

processor, comprising the steps of: •
(a) building a modeling layer object in the storage;
(b) generating calls from the modeling layer object to

grafport object using a predefined set of graphic primi- 50
tives;

(c) capturing state information and rendering information
at the grafport object; and

55
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