

EXHIBIT C

Apple, Inc. v. Motorola, Inc. et al Doc. 12 Att. 3

Dockets.Justia.com

http://dockets.justia.com/docket/wisconsin/wiwdc/3:2010cv00662/29072/
http://docs.justia.com/cases/federal/district-courts/wisconsin/wiwdc/3:2010cv00662/29072/12/3.html
http://dockets.justia.com/

5,838,315
Nov. 17, 1998

[11]

[45]

111
US005838315A

Patent Number:

Date of Patent:

United States Patent [19]

Craycroft et al.

Primary Examiner-Thomas G. Black

Assistant Examiner~uayLian Ho

Attorney, Agent, or Firm-Burns, Doane, Swecker &

Mathis, L.L.P.

[54] SUPPORT FOR CUSTOM USER
INTERACTION ELEMENTS IN A
GRAPHICAL, EVENT-DRIVEN COMPUTER
SYSTEM

[75] Inventors: Timothy J. Craycroft; Robert R.
Ulrich, both of Mountain View, Calif. [57] ABSTRACT

Related U.S. Application Data

[73] Assignee: Apple Computer, Inc., Cupertino,
Calif.

[56] References Cited

U.S. PATENT DOCUMENTS

[21] Appi. No.: 977,059

[22] Filed: Nov. 24, 1997

Explicit support for custom gadgets is provided, at a system

software level, in a manner that is essentially application

transparent. Specific support is provided for the addition of

one custom gadget per window. The custom gadget is

identified by a specific numeric code in the same manner as

the close and zoom boxes. An application simply tells the

system software what the custom gadget for a particular

window should look like. The code responsible for drawing

that window's frame then knows where to find the image of

the custom gadget and will render it appropriately. When a

user clicks in the custom gadget, the system software notifies

the application of the event by means of the numeric code

associated with the custom gadget. More particularly, in

accordance with one embodiment of the invention, a custom

interactive user-interface element is provided in a title bar of

a window of an application program in a graphical, event

driven computer system having a computer display. The

custom interactive user-interface element is provided by

storing information, referring to an icon stored as part of said

application program and used to visually represent the

custom interactive user-interface element, in a location

accessible to a Window Manager. The Window Manager

then draws on the computer display a frame of the window

including the icon used to visually represent the custom

interactive user-interface element.

17 Claims, 1 Drawing Sheet

OlliER PUBLICATIONS

8/1992 Fleming et al. 345/348
8/1992 Torres 345/333
8/1994 Risberg et al. 345/333
2/1995 Squires et al. 345/334
6/1995 Chang et al. 345/331
8/1996 Morgan et al. 345/342
8/1996 Cline et al. 345/342

12/1996 Bier et al. 345/326
1/1997 Johnston, Jr. et al. 345/348

12/1997 Johnston, Jr. et al. 345/335
5/1998 Johnston, Jr. et al. 345/343

5,140,677
5,140,678
5,339,392
5,388,202
5,428,729
5,544,288
5,546,520
5,581,670
5,598,524
5,696,915
5,754,178

[63] Continuation of Ser. No. 593,171, Feb. 1, 1996, Pat. No.
5,692,142.

[51] Int. C1.6 G06F 3/14
[52] U.S. Cl. 345/333; 345/326
[58] Field of Search 345/326-334,

345/339-342, 348, 352

Burge, Thomas E. et aI., "Advanced OS/2, Presentation
Manager Programming", John Wiley & Sons, Inc., 293-308
1993.

HIT TESTING

RETURN PART
CODE TO

APPLICATION

END

u.s. Patent Nov. 17, 1998 5,838,315

(DRAW WINDOW)

+
DRAW WINDOW

USING
STANDARD WDEF

•DRAW GADGET
oVERLA Y USING
CUSTOM WDEF

~
(END

FIG. 1 PRIOR ART

DRAW WINDOW

WDEF

DRAW STANDARD
WINDOW FRAME

DRAW CUSTOM GADGET
ICON @ PREDETERMINED

SIZE AND LOCATlON

FIG. 3

HIT TESTING HIT TESTING

FIG. 4

HIT TEST
USING WDEF

FIND WINDOW

RETURN PART
CODE TO

APPLICA TlON

PART CODE
(CUSTOM GADGET=9)

YES

NO

YES

FIG. 2 PRIOR ART

HIT TEST
USING

CUSTOM WDEF

HIT TEST
USING

STANDARD WDEF

5,838,315
2

SUMMARY OF THE INVENTION

The present invention, generally speaking, provides, at a
system software level, explicit support for custom gadgets in
a manager that is essentially application-transparent. Spe
cific support is provided for the addition of one custom
gadget per window. The custom gadget is identified by a
specific numeric code in the same manner as the close and
zoom boxes. An application simply tells the system software
what the custom gadget for a particular window should look
like. The code responsible for drawing that window's frame
then knows where to find the image of the custom gadget
and will render it appropriately. When a user clicks in the
custom gadget, the application gets the event and calls on the
system software to identify the event. The system software
identifies the event to the application by means of the
numeric code associated with the custom gadget. More
particularly, in accordance with one embodiment of the
invention, a custom interactive user-interface element is
provided in a title bar of a window of an application program
in a graphical, event-driven computer system having a
computer display. The custom interactive user-interface ele
ment is provided by storing information, referring to an icon
stored as part of said application program and used to
visually represent the custom interactive user-interface

have therefore been implemented by working around system
software using multiple software "patches" in a way that is
not only cumbersome but also inflexible.

A custom WDEF must perform two different functions
5 with respect to custom gadgets, drawing (i.e., providing for

actual rendering the custom gadget on the computer screen)
and hit-testing (i.e., determining when the custom gadget
has been clicked). Because application developers wanting
to add a custom gadget typically do not want to completely

10 change a window's appearance from that of a standard
window but only want to augment its appearance, they
effectively use custom WDEFs to patch the WDEFs pro
vided by the system. The custom WDEFs do their augmen
tation before and/or after calling through to a system-

15 provided WDEF.

The two behaviors such custom WDEFs must alter are the
drawing behavior and the hit-testing behavior. As illustrated
in FIG. 1, when called to draw a window frame, the custom
WDEF will call the system WDEF to draw the window and

20 will then draw the custom gadget on top of the window that
was just drawn. A significant drawback to this approach is
that it requires developers to make assumptions about the
geometry and appearance of the system's windows in order
to attach custom gadgets. If the geometry or appearance of

25 the window provided by the system should change, the
application's custom gadget will be drawn incorrectly in
relation to the other screen elements of the window. As
illustrated in FIG. 2, when hit-testing, the process works in
the opposite direction. The custom WDEF will first see if the

30 input point is in the custom gadget. If so, the custom WDEF
will return without calling the system WDEF. If not, the
custom WDEF will call through to the system WDEF to find
where in the window the point lies. Hit-testing therefore
requires a front-end code patch, while drawing requires a

35 rear-end code patch.

The foregoing mechanism is unreliable, since it depends
on system behavior not within the developer's control,
cumbersome and inflexible. What is needed, then, is a

40 mechanism that explicitly supports custom gadgets (user
interaction elements) in an efficient way that requires a
minimum of application involvement.

1
SUPPORT FOR CUSTOM USER
INTERACTION ELEMENTS IN A

GRAPHICAL, EVENT-DRIVEN COMPUTER
SYSTEM

This application is a continuation of application Ser. No.
08/593,171, filed Feb. 1, 1996, now U.S. Pat. No. 5,692,142.

BACKGROUND OF THE INVENTION

1. Field of the Invention
The present invention relates to graphical, event-driven

computer systems, more particularly to custom interactive
user-interaction elements in a computer system having a
window-based graphical user interface.

2. State of the Art
A large amount of effort has been devoted to improving

the ease of using computer systems. One area where this is
especially evident is that of computer user interfaces. For
example, the use of windows, icons and pulldown, pop-up,
or tear-off menus greatly enhances the ease of using a
computer system. One computer system which makes exten
sive use of windows is the Macintosh computer system
manufactured by Apple Computer, Inc. In the Macintosh
computer, a window is a desktop object that displays infor
mation such as a document or a message. Windows can be
any size, shape or color, and there can be one or many of
them depending on the application.

The part of the window that the application draws in is
called the content region. The rest of the window is drawn
by a collection of system software routines for creating and
manipulating windows known as the Window Manager. The
parts of the window that the Window Manager draws (using
a window definition) make up the window frame, which
usually surrounds the rest of the window. In a standard
document window, for example, the frame consists of a title
bar and an outline of the window.

A window always has at two regions: a content region,
which is the area where an application displays information,
and a structure region, which is the entire window (the
content region plus the window frame). The content region
may also contain a size box and scroll bars. A window
usually has additional regions including a close box (go
away region) and a zoom box. Clicking in the close box
closes the window. Clicking in the zoom box causes the 45

window to grow so that it fills the entire screen or grows as
much as necessary to display all the information it contains.
On a Macintosh system, the close box and the zoom box are
standard interactive user-interface elements, or "gadgets",
and are located in the title bar portion of a window, the close 50

box in the upper left comer and the zoom box in the upper
right corner. Different systems may provide sets of gadgets
in a window title bar different from the set in a Macintosh
window.

Many application programs written for the Macintosh use 55

only standard, system-defined windows having only the
standard gadgets (close box and zoom box) in the title bar.
Applications are not limited to using standard windows,
however, but are free to define their own windows, having
"custom" gadgets particular to that application if desired, 60

using custom window definitions, or WDEFs. A WDEF is
the code responsible for drawing window frames and for
telling the Window Manager what part of a window a
particular point is in. Custom gadgets have not been spe
cifically supported by the Macintosh system software. 65

Furthermore, no system is known to allow application to add
custom gadgets on a per-window basis. Custom gadgets

5,838,315
3 4

o
1
2
3
4
5
6
7
8
9

10

inDesk ~

inMenuBar =

inSysWindow ~

inContent =

inDrag ~

inGrow =

inGoAway ~

ifZoomln =

ilZoomOut ~
inCustomGadget ~
inTitleIcon ~

//FindWindow return codes
enum

};

Using the foregoing part codes, FindWindow identifies to
the application which window and whichever part of that
window, including the custom gadget, the click may have
been in. As shown in FIG. 4, hit-testing is therefore greatly
simplified. Once a click has been detected and communi
cated to the application, the application simply calls
FindWindow, which performs hit-testing according to the
normal WDEF and returns a part code to the application.

Using the arrangement described, explicit support is
provided, at a system software level, for custom gadgets in
a manner that is essentially application-transparent.

It will be appreciated by those of ordinary skill in the art
that the invention can be embodied in other specific forms
without departing from the spirit or essential character
thereof. The presently disclosed embodiments are therefore
considered in all respects to be illustrative and not restric
tive. The scope of the invention is indicated by the appended
claims rather than the foregoing description, and all changes
which come within the meaning and range of equivalents
thereof are intended to be embraced therein.

What is claimed is:
1. For use in a graphical, event-driven computer system

having a computer display and a graphical user interface, a
method of providing a customer interactive user-interface
element in a frame of a window of an application program,
in addition to system-defined elements provided in each
window displayed by said computer system, said method
comprising the steps of:

storing information referring to an icon, stored as part of
said application program and used to visually represent
the custom interactive user-interface element, in a
location accessible to a window manager; and

the window manager drawing on the computer display a
frame of the window including drawing, at a size and
location determined by the window manager, the icon
used to visually represent the custom interactive user
interface element;

65

60

custom gadget. As shown in FIG. 3, the WDEF, besides
drawing the standard window frame, simply draws the
custom gadget icon specified by the application at a prede
termined size and location. Since the WDEF already posses

5 information fully describing the window frame, there is no
danger of improper placement of the custom gadget as in the
prior art.

Identification of a mouse click in the custom gadget is
seamlessly integrated into a single hit-testing procedure.

10 When a user clicks the mouse button, the application calls
the Window Manager (using a FindWindow system call) to
determine the window in which the user clicked FindWin
dow also tells the application where in the particular window
the user clicked. Specific codes are defined for each location
in a window. A unique code identifies the custom gadget, as

15 shown below:

A tag to identify a custom gadget
appearance property.
An icon suite in which the appearance
of the gadget is defined.
Identifies the window to which the
gadget is to be added.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

BRIEF DESCRIPTION OF THE DRAWINGS

gadgetImage

theWindow

kCustomGadgetProperty

element, in a location accessible to a Window Manager. The
Window Manager then draws on the computer display a
frame of the window including the icon used to visually
represent the custom interactive user-interface element.

25
The present invention will be described in detail in

relation to the Macintosh computer system and its system
software. It should be understood, however, that the inven
tion is broadly applicable to graphical, event-driven com
puter systems of all types as well as to different graphical 30

user interfaces including, for example, X Windows, AUX,
Microsoft Windows, MOTIF, etc.

The invention provides new functionality in system soft
ware that removes the need for applications to make
assumptions regarding the appearance or geometry of a 35

window and also removes the need to "work around" the
system using assumptions about how the operating system
works. This functionality insures the smooth integration of
a custom gadget into any system-provided window, allowing
the appearance of system-provided windows to change 40

without affecting applications that use custom gadgets. In
the Macintosh system, this functionality is provided in the
Window Manager. In other systems, the same functionality
may be provided within whatever code module or modules
that provide routines for creating and manipulating win- 45

dows.
In accordance with a preferred embodiment of the present

invention, an application program interface (API) call Set
WindowProperty is used to "attach" a given custom gadget
to a window. In the Macintosh system, properties are tagged 50

data that can be attached to various elements in the Macin
tosh Toolbox.
The syntax of SetWindowProperty is

SetWindowProperty (theWindow,
kCustomGadgetProperty, &gadgetImage, sizeof 55

(Handle));
where the listed parameters have the following meanings;

The present invention may be further understood from the
following description in conjunction with the appended
drawing. In the drawing:

FIG. 1 is a flow diagram showing a mechanism for
drawing custom user-interface elements in accordance with
the prior art;

FIG. 2 is a flow diagram showing a mechanism for
hit-testing windows including custom user-interface ele
ments in accordance with the prior art;

FIG. 3 is a flow diagram showing a mechanism for
drawing custom user-interface elements in accordance with
the present invention; and

FIG. 4 is a flow diagram showing a mechanism for 20

hit-testing windows including custom user-interface ele
ments in accordance with the present invention.

Using the foregoing information, a system-supplied
WDEF is readily able to draw the window including the

5
5,838,315

6
wherein clicking on the custom interface user-interface

element causes the application to perform a function
that is in addition to functions defined as part of the
graphical user interface.

2. The method of claim 1, comprising the further steps of: 5

defining a unique part code, designating a custom inter
active user-interface element, within a system resource
responsible for, using the window definition system
resource, testing to determine in which window and
where within that window a user click may have 10

occurred;

receiving from the application program a call to the
system resource responsible for said testing and in
response thereto invoking the system resource respon-
sible for said testing; and 15

returning to the application program a part code desig
nating the custom interactive user-interface element if
the click occurred within a region occupied by the icon
used to visually represent the custom interface user- 20

interface element.
3. The method of claim 2, wherein the custom user

interface element is displayed in a frame of the window.
4. The method of claim 2, wherein system software is

responsive to a system call of a predetermined format to add 25

said custom graphical user interface element to said window.
5. The method of claim 4, wherein said system call is a

generic call used to set window properties and takes as
parameters a window identifier and a string constant indi
cating that a custom user interface element is to be added to 30

the window.
6. The method of claim 5, wherein said call takes as a

further parameter a pointer to at least one icon representing
the custom user interface control.

7. A computer system having a graphical user interface 35

and having system software that provides for the addition of
a custom user interface control to an application program,
comprising:

a CPU subsystem; and

coupled to the CPU subsystem, a storage subsystem 40

storing said system software, said system software
including program instructions for, in response to a
system call of a predetermined format from said appli
cation program:
displaying said custom user interface control as part of 45

a display window belonging to the application

program, at a size and location determined by the
system software; and

notifying the application of a user event in which the
custom user interface control is activated.

8. The apparatus of claim 7, wherein the custom user
interface control is displayed in a frame of the window.

9. The apparatus of claim 8, wherein said system call is a
generic call used to set window properties and takes as
parameters a window identifier and a string constant indi
cating that a custom user interface control is to be added to
the window.

10. The apparatus of claim 9, wherein said call takes as a
further parameter a pointer to at least one icon representing
the custom user interface control.

11. The apparatus of claim 7, wherein notifying the user
comprises returning to the application a code associated with
the customer user interface control.

12. A machine readable medium storing system software
computer program instructions providing for the addition of
a custom graphical user interface control to an application
program, including instructions for:

displaying said custom user interface control as part of a
display window belonging to the application program,
at a size and location determined by the system soft
ware; and

notifying the application of a user event in which the
custom user interface control is activated.

13. The article of claim 12, wherein the custom user
interface control is displayed in a frame of the window.

14. The article of claim 12, wherein said system software
is responsive to a system call of a predetermined format to
add said custom graphical user interface control to said
window.

15. The article of claim 14, wherein said system call is a
generic call used to set window properties and takes as
parameters a window identifier and a string constant indi
cating that a custom user interface control is to be added to
the window.

16. The article of claim 15, wherein said call takes as a
further parameter a pointer to at least one icon representing
the custom user interface control.

17. The article of claim 12, wherein notifying the user
comprises returning to the application a code associated with
the customer user interface control.

* * * * *

