

EXHIBIT E

Apple, Inc. v. Motorola, Inc. et al Doc. 12 Att. 5

Dockets.Justia.com

http://dockets.justia.com/docket/wisconsin/wiwdc/3:2010cv00662/29072/
http://docs.justia.com/cases/federal/district-courts/wisconsin/wiwdc/3:2010cv00662/29072/12/5.html
http://dockets.justia.com/

111
US006424354Bl

(12) United States Patent
Matheny et ai.

(10) Patent No.:
(45) Date of Patent:

US 6,424,354 BI
Jui. 23, 2002

(54) OBJECT-ORIENTED EVENT NOTIFICATION
SYSTEM WITH LISTENER REGISTRATION
OF BOTH INTERESTS AND METHODS

(75) Inventors: John R. Matheny; Christopher White,
both of Mountain View; David R.
Anderson, Cupertino; Am J.
Schaeffer, Belmont, all of CA (US)

(73) Assignee: Object Technology Licensing
Corporation, Cupertino, CA (US)

OTHER PUBLICATIONS

(List continued on next page.)

9/1992
3/1993
3/1993
9/1972
9/1992

506102 A
529770 A

0529770
WO 92/15934
WO 92/15934 A

EP
EP
EP
WO
WO

IBM Programming Guide, Sep., 1989, First Edition, "Oper­
ating System/2 Programming Tools and Information" Ver­
sion 1.2, pp. 3-7 through 3-18 and 7-1 through 7-28.
Schumaker, Kurt J., "Object-Oriented Languages:
MACAPP: An Application Framework", Byte, Aug., 1986,
pp. 189-193.Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.c. 154(b) by 0 days.

(*) Notice:

(21) Appl. No.: 09/287,172

(22) Filed: Apr. 1, 1999

References Cited

U.S. PATENT DOCUMENTS

FOREIGN PATENT DOCUMENTS

ABSTRACT

59 Claims, 15 Drawing Sheets

(57)

An event notification system for propagating object-change
information. The notification system supports change noti­
fication without queues in an object-based application or
operating system and can be scaled to propagate large
numbers of events among a large plurality of objects. The
event notification system interconnects a plurality of event
source and event receiver objects. Any object, such as a
command object, may operate as either an event receiver
object, an event source object or both. A notification object
is created by a source object to transport, from a source to
a receiver, descriptive information about a change, which
includes a particular receiver object method and a pointer to
the source object that sent the notification. A receiver object
must register with a connection object its "interest" in
receiving notification of changes; specifying both the event
type and the particular source object of interest. After
establishing such connections, the receiver object receives
only the events of the specified type for the source objects
"of interest" and no others. This delegation of event selec­
tion avoids central event queuing altogether and so limits
receiver object event processing that the invention can be
scaled to large systems operating large numbers of objects.

Primary Examiner-Matthew Luu
(74) Attorney, Agent, or Firm-Morgan & Finnegan, LLP

8/1985
8/1985
1/1990
1/1990

11/1990
8/1992
9/1992

4/1972 DeCou
5/1975 Grossman

0150273
150273 A
352908 A

0352908
398646 A
499404 A

0506 102

(List continued on next page.)

Related U.S. Application Data

Continuation of application No. 07/996,775, filed on Dec.
23, 1992, now Pat. No. 6,259,446.

Int. CI? G06F 13/00
U.S. Cl. 345/619; 345/700; 345/764
Field of Search 345/619, 621,

345/623, 624, 625, 700, 716, 764

3,658,427 A
3,881,605 A

(56)

(63)

EP
EP
EP
EP
EP
EP
EP

(51)
(52)
(58)

US 6,424,354 BI
Page 2

U.S. PATENT DOCUMENTS

OTHER PUBLICATIONS

Wang et aI., "An Event-Object Recovery Model For Objec­
t-Oriented User Interfaces", Fourth Annual Symposium on
User Inteface Software and Technology: Proceedings of the
ACM Symposium on User Interface Software and Technol­
ogy, Nov. 11, 1991, pp. 107-115.
Microsoft Systems Journal, Jan., 1990, vol. 5. No.1, "Soft­
ware Architecture Object-Oriented Programming Design",
p. 14 (3).
Coop-Berre, "An Object Oriented Framework for Systems
Integration", pp. 104-107.
Microsoft Corp., Windows User's Guide for Version 3.1,
1990-1992, pp. 52, 83-85.
Microsoft Corp., "A Presentation Manager Primer,"
Microsoft Systems Journal, Jan. 1990, v5, n1, pp. 14-17.
Berre, Arne-J0rgen, "COOP-An Object Oriented Frame­
work for Systems Integration," ICSI'92 Proc. 2nd Int'l Con!
On Systems Integration, Jun. 15, 1992, Morristown, NJ, pp.
104-113.
Hirakawa et aI, "A Framework for Construction of Icon
Systems," IEEE, 1998, pp. 70-77.
IBM Corp., "Systems Application Architecture, Common
User Access, Advanced Interface Design Guide," Jun. 1989,
pp. 55-81, 97-99.
Apple Computer, Inc., "System 7-Macintosh Reference
Guide," 1992, Cupertino, CA, pp. 30, 70, 72, 75.
Booch, Grady, "Object Oriented Design with Applications,"
1991, pp. 45-6, 65 & 494.
Campbell et aI., "Choices, Frameworks and Refinement,"
Proc. Int'l Workshop on Object Orientation in Operating
Systems, Oct. 17, 1991, Palo Alto, CA, pp. 9-15.
Cobb et aI, "Examining NewWave, Hewlett-Packard's
Graphical Object-Oriented Environment," Microsoft Sys­
tems Journal, Nov. 1989, pp. 1-18 and Exhibits A-B.
Embry et aI., "An Open Network Management Architecture:
OSI/NM Forum Architecture and Concepts," IEEE Network
Magazine, Jul. 1990, pp. 14-22.
Franz, Marty, "Object-Oriented Programming Featuring
ACTOR," 1990, Chapters 1-2 & 19-22.

4,082,188 A
4,635,208 A
4,677,576 A
4,679,137 A
4,686,522 A
4,704,694 A
4,742,356 A
4,760,386 A
4,821,220 A
4,823,283 A
4,831,654 A
4,835,685 A
4,843,538 A
4,853,843 A
4,868,744 A
4,885,717 A
4,891,630 A
4,931,783 A
4,939,648 A
4,943,932 A
4,953,080 A
4,982,344 A
5,008,810 A
5,040,131 A
5,041,992 A
5,050,090 A
5,060,276 A
5,075,848 A
5,083,262 A
5,093,914 A
5,119,475 A
5,125,091 A
5,129,084 A
5,133,075 A
5,136,705 A
5,140,677 A
5,151,987 A
5,163,130 A
5,168,411 A
5,168,441 A
5,177,685 A
5,181,162 A
5,198,802 A
5,206,951 A
5,228,123 A
5,230,063 A
5,237,654 A
5,239,287 A
5,241,655 A
5,265,206 A
5,276,775 A
5,276,816 A
5,280,610 A
5,287,448 A
5,291,587 A
5,295,222 A
5,295,256 A
5,297,253 A
5,297,284 A
5,301,301 A
5,301,336 A
5,309,566 A
5,313,629 A
5,313,636 A
5,315,703 A
5,315,709 A
5,317,741 A
5,321,841 A
5,325,481 A
5,325,522 A

4/1978 Grimmell et al.
1/1987 Coleby et al.
6/1987 Berlin, Jr. et al.
7/1987 Lane et al. 364/188
8/1987 Hernandez et al.

11/1987 Czerniejewski
5/1988 Kuipers
7/1988 Heath et al. 340/709
4/1989 Duisberg
4/1989 Diehm et al. 364/518
5/1989 Dick 381/51
5/1989 Kun 364/200
6/1989 Lane et al. 364/188
8/1989 Ecklund 364/200
9/1989 Reinsch et al. . 364/280.3

12/1989 Beck et al.
1/1990 Friedman et al.
6/1990 Atkinson 340/710
7/1990 O'Neill et al.
7/1990 Lark et al. 364/513
8/1990 Dysart et al.
1/1991 Jordan 364/521
4/1991 Kessel et al. 364/200
8/1991 Torres 364/521
8/1991 Cunningham et al.
9/1991 Golub et al.

10/1991 Morris et al.
12/1991 Lai et al.

1/1992 Haft, Jr. .. 395/500
3/1992 Coplien et al.
6/1992 Smith et al.
6/1992 Staas, Jr. et al.
7/1992 Kelly et al. 395/650
7/1992 Risch
8/1992 Stubbs et al.
8/1992 Fleming et al. 395/159
9/1992 Abraham et al.

11/1992 Hullot 395/148
12/1992 Fujii
12/1992 Onarheim et al. 364/146

1/1993 Davis et al.
1/1993 Smith et al.
3/1993 Bertram et al. 340/709
4/1993 Khoyi et al. 395/650
7/1993 Heckel 395/155
7/1993 Hoeber et al. 395/156
8/1993 Shakelford et al. 395/160
8/1993 Siio et al. 340/706
8/1993 Mineki et al. 395/156

11/1993 Shackelford et al.
1/1994 Meng 395/55
1/1994 Cavendish et al. 395/275
1/1994 Travis et al. 395/600
2/1994 Nicol et al. 395/159
3/1994 Kodosky et al. 395/500
3/1994 Wadhwa et al. 395/1
3/1994 Bapat 395/500
3/1994 Meisel 395/160
3/1994 Jones et al. 395/700
4/1994 Kodosky et al. 395/500
4/1994 Kodosky et al. 395/800
5/1994 Larson 395/275
5/1994 Abraham et al. 395/600
5/1994 Noble et al. 395/700
5/1994 Matheny et al.
5/1994 Alston et al. 395/600
5/1994 Schwanke 395/700
6/1994 East et al. 395/725
6/1994 Hunt 395/159
6/1994 Vaughn 395/600

5,325,524 A
5,325,533 A
5,327,529 A
5,329,446 A
5,339,433 A
5,345,550 A
5,347,626 A
5,367,633 A
5,371,846 A
5,371,851 A
5,371,886 A
5,375,164 A
5,386,556 A
5,390,314 A
5,414,812 A
5,416,903 A
5,434,965 A
5,446,902 A
5,479,601 A
5,497,319 A
5,517,606 A
5,530,864 A
5,550,563 A
5,551,055 A
5,583,982 A
5,717,877 A

6/1994 Black et al. 395/600
6/1994 McInerney et al. 395/700
7/1994 Fults et al.
7/1994 Kugimiya et al. 364/419.04
8/1994 Frid-Nielsen 395/700
9/1994 Bloomfield 395/156
9/1994 Hoeber et al. 395/156

11/1994 Matheny et al.
12/1994 Bates 395/157
12/1994 Pieper et al. 395/164
12/1994 Britton et al. 395/600
12/1994 Jennings 379/88

1/1995 Hedin et al. 395/600
2/1995 Swanson 395/500
5/1995 Filip et al. 395/200
5/1995 Malcolm 395/155
7/1995 Matheny et al. 395/159
8/1995 Islam

12/1995 Matheny et al. 395/155
3/1996 Chong et al. 364/419.02
5/1996 Matheny et al. 395/156
6/1996 Matheny et al. 395/700
8/1996 Matheny et al. 345/168
8/1996 Matheny et al. 395/882

12/1996 Matheny et al. 395/326
2/1998 Orton et al. 395/326

US 6,424,354 BI
Page 3

IBM Corp., "Dynamic Icon Presentation," IBM Technical
Disclosure Bulletin, Y.35, NAB, Sep. 1992, Armonk NY, pp.
227-232.
IBM Corp., "Pause Review: a Technique for Improving the
Interactivity of Direct Manipulation," IBM Technical Dis­
closure Bulletin, Y.34, N.7A, Dec. 1991, Armonk, NY, pp.
20-25.
IBM Corp., "Auto Scroll During Direct Manipulation," IBM
Technical Disclosure Bulletin, Y.33, N.ll, Apr. 1991,
Armonk NY, p. 312.
IBM Corp., "Volume 3: Presentation Manager and Work­
place Shell," 0/S/2 Version 2.0, Apr. 1992, IBM Corporation
International Technical Support Center, Boca Raton, FL, p.
53.
IBM Corp., "Presentation Manager Programming Refer­
ence," Volume III, OS/2 Technical Library, Mar. 1992.
IBM Corp., "Programming Guide," Operating System/2
Programming Tools and Information Version 1.2, Sep.1989,
pp. 3-7 to 3-18 and 7-1 to 7-28.
IBM Corp., "Getting Started: Using IBM Rise System/
6000," Jan. 1992.
Khoshafian, Setrag, "Intelligent Offices, Object-Oriented
Multi-Media Information Management in Client/Server
Architectures," 1992, Chapter 8, pp. 235-304.
Meyrowitz, Norman, "Intermedia: The Architecture and
Construction of an Object-Oriented Hypermedia System
and Applications Framework," OOPSLA '86 Conference
Proceedings, Sep. 29-0ct. 2, 1986, Portland, OR, pp.
186-201.
Microsoft Corp., "Window User's Guide for Version 3.0,"
1990, pp. 128-133.
Microsoft Corp., "MS-DOS User's Guide," 1988, pp.
21-25,77-80 & 165-170.
Miyauchi et aI., "An Implementation of Management Infor­
mation Base," IEEE, 1991, pp. 318-321.
Myers et aI, "Environment for Rapidly Creating Interactive
Design Tools," The Visual Computer, v.8, No.2, Feb. 1992,
Berlin, DE, pp. 94-116.
Myers, Brad, "Creating Interaction Techniques by Demon­
stration," IEEE Computer Graphics and Applications, Y.7,
N.9, Sep. 1987, New York, US, pp. 55-61.
Reiss, Steven P., "Connecting Tools Using Message Passing
in the Field Environment," IEEE Software, Jul. 1990, pp.
57-66.
Schmucker, Kurt, "MACAPP: An Application Framework,"
Byte Magazine, Aug. 1986, pp. 189-193.
Smith, R.B., "The Alternate Reality Kit," IEEE, Proceed­
ings of Workshop on Visual Languages, Jun. 25, 1986,
Dallas, TX, pp. 99-106.
Microsoft Corp., Windows User Guide for Version 3.1,
1990-1992,pp. 52, 83-85.

Microsoft Corp., "A Presentation Manager Primer",
Microsoft Systems Journal, Jan. 1990, v5, n1, pp. 14-17.
Apple Computer, Inc., "System 7-Macintosh Reference
Guide, " 1992, Cupertino, CA, pp. 30, 70, 72, 75.
Booch, Grady, "Object Oriented Design with Applications",
1991, pp. 45-6, 65 and 494.
Campbell et aI., "Choices, Frameworks and Refinement, "
Proc. Int'l Workshop on Object Orientation in Operating
Systems, Oct. 17, 1991, Palo Alto, CA. pp. 9-15.
Cobb et aI., "Examining NewWave, Hewlett-Packard's
Graphical Object-Oriented Environment, " Microsoft Sys­
tems Journal, Nov. 1989, pp. 1-18 and Exhibits A-B.
Dodani et aI., "Separation of Powers, " Byte Magazine, v.
143, Mar. 1989, pp. 255-271.
Embry et aI., "An Open Network Management Architecture:
OSI/NM Forum Architecture and Concepts," IEEE Network
Magazine, Jul. 1990, pp. 14-22.
IBM Corp., "Dynamic Icon Presentation, " IBM Technical
Disclosure Buletin, V35, n04B, Sep. 1992, Armonk, NY, pp.
227-232.
IBM Corp., "Pause Review: A Technique for Improving the
Interactivity of Direct Manipulation, " IBM Technical Dis­
closure Buletin, v34, n7A, Dec. 1991, Armonk, NY, pp.
20-25.
IBM Corp., "Auto Scroll During Direct Manipulation, "
IBM Technical Disclosure Buletin, v33, nll, Apr. 1991,
Armonk, NY, p. 312.
IBM Corp., "vol. 3: Presentation Manager and Workplace
Shell, " 0/S/2 Version 2.0, Apr. 1992, IBM Corporation
International Technical Support Center, Bocal Raton, FL, p.
53.
IBM Corp., "Presentation Manager Programming Refer­
ence, " vol. III, OS/2 Technical Library, Mar. 1992.
IBM Corp., "Getting Started: Using IBM RISC System/
6000", Jan. 1992.
Microsoft Corp., "Window User's Guide for Version 3.0"
1990, pp. 128-133.
Microsoft Corp., "MS-DOS User's Guide", 1988, pp.
21-25,77-80 and 165-170.
Miyauchi et aI., "An Implementation of Management Infor­
mation Base, " IEEE, 1991, pp. 318-321.
Reiss, Steven P., "Connecting Tools Using Message Passing
in the Field Environment, " IEEE Software, Jul. 1990, pp.
57-66.
Smith, R.B., "The Alternate Reality Kit, " IEEE, Proceed­
ings of Workshop on Visual Languages, Jun. 25, 1986,
Dallas, TX, pp. 99-106.
Williams, Greg, "Software Frameworks, " Byte Magazine,
Dec. 1984, pp. 124-127 and 394-410.

u.s. Patent Jui. 23, 2002 Sheet 1 of 15 US 6,424,354 BI

"<:i"
C') co

co C')
,....... «~

0 ~ ~

('\J
0 a .
---- u

"-LL

"<:i" c:.o
C')

~
>-0:«w« -ll-

0: a.. a..(f)«
-00«

co
('\J

c:.o /
...-

\

~
a
0: Wo:Ow«I-

LLo....CI:« c:.o
W o

('\J

~«
0,.......

('\J
('\J

::::> ('\J
0.... ('\J C')

°
,.......

u.s. Patent Jut 23, 2002 Sheet 2 of 15 US 6,424,354 BI

40 41

hrollp
OnqrolJp
lock:
HnlocK
Align .

~~ffieI~~~~U'V& .
Rotate

42

FIG. 18

220
200

~ BOLD

(' 210

B>
FIG. 2

CONNECTION

Q BOLD

I INTERESTS \
300 310

\

320

FIG. 3

u.s. Patent Jui. 23, 2002 Sheet 3 of 15

NOTIFICATION

US 6,424,354 BI

7BOLD

400

JBOLD

510 VALUE

VALUE

FIG. 4

VALUE

520

FIG. 5

(BOLD

600
610

VALUE

620

FIG. 6

u.s. Patent Jui. 23, 2002 Sheet 4 of 15 US 6,424,354 BI

NOTIFICATION

••
~ BOLD

VALUE

VALUE

VALUE

FIG. 7

804

SOUND CONTROLLER

806

It> II

STEP STOP PAUSE

802

o

800

FIG. 8

lJ
COLOR EDITOR 900

RED a c===H==========:::::J

GREEN a c::::::::::::::::::::::::::::::::=:::H~

BLUE a c:::::===~,I========:::::J

255

255

910

930
!

920

FIG. 9

u.s. Patent Jui. 23, 2002 Sheet 5 of 15 US 6,424,354 BI

c::========o J 255 TSetColor
TFloatControlCommand ----... red ,

float --------------.----.-------------------- green ----+- "COLOR"
--.----. blue -...:

1000
~\

RED 0

1010

'\
GREEN 0

BLUE 0

1020

~~===========:::Ji 255

TFloatControICommand
float ----- -------------

=====10 =::J 255

TFloatControlCommand
float ------------------ .

FIG. 10

./ 1040
//

!

(APPLY)

1050

1100
~---c!> PAPER

~---o PLASTIC

1110

FIG. 11

u.s. Patent Jui. 23, 2002

START

Sheet 6 of 15

1200

1210

US 6,424,354 BI

1240

UPDATE MENU

1220

QUERY OBJECTS

1230

QUERY COMMAND

1260

1270

1280
MODIFY STATE

/1250
/

HIGHLIGHT
MENU

,....---~--l __ 1290
NOTIFY MENU

FIG. 12

u.s. Patent Jui. 23, 2002 Sheet 7 of 15 US 6,424,354 BI

.
C'-LL

DOD

u.s. Patent Jui. 23, 2002 Sheet 8 of 15

START

ACTIVATE
DIALOG BOX

1400

1410

US 6,424,354 BI

1420
MANIPULATE

CONTROL

1 1430

CHANGE
VALUE

1440

RECORD
COMMAND

RE-RECORD
COMMAND

NO

1470

FIG. 14

u.s. Patent Jui. 23, 2002 Sheet 9 of 15

START

INTITIALIZE
LABEL

DRAW LABEL

TOGGLE LABEL

US 6,424,354 BI

1500

1510

1520

---1530

1540

TOGGLE CONTROL

YES?

STOP

FIG. 15

~1550

1560

u.s. Patent Jui. 23, 2002 Sheet 10 of 15 US 6,424,354 BI

START
V-- 160

"
INITIALIZE V

TITLE

--
"

V
DRAW TITLE

"
~

TOGGLE TITLE

FIG. 16

o

1610

1620

1630

u.s. Patent Jui. 23, 2002 Sheet 11 of 15 US 6,424,354 BI

START

BUTTON
DETECTED

INTERACTOR
CREATED

INTERACTOR
STARTED

DELAY

1700

1710

1720

1730

1740

1760

STOP
NO

FIG. 17

YES

u.s. Patent Jui. 23, 2002

1800

Sheet 12 of 15 US 6,424,354 BI

1810

1820

1830

CREATE CONNECTION

DEFINE INTERESTS

CONNECT SOURCES

1840 REGISTER CONNECTIONS FIGURE 18

1845

1850

1860

1870

1880

NO

AWAIT
CHANGE

CHANGE
DESCRIPTION

DISPATCH
NOTIFICATION

SEND
NOTIFICATION

RECEIVE
NOTIFICATON

YES

1885

u.s. Patent Jui. 23, 2002 Sheet 13 of 15

1900 START

US 6,424,354 BI

~l 191 0

-J'-
REQUEST PRESENTATION

"
CREATE

1920 PRESENTATION

"

1930 BUILD PRESENTATION

--

FIGURE 19

u.s. Patent Jui. 23, 2002

START

Sheet 14 of 15

2000

US 6,424,354 BI

No

No

COMPLETE
SCROLL

2010

2020

Yes

SET
POSITION

2040

2060

FIGURE 20
2070 STOP

u.s. Patent Jui. 23, 2002

Name

D file- 1

D file- 2

o file- 3

Sheet 15 of 15

2112

US 6,424,354 BI

FIGURE21A

Name

ofile 4

Dfile- 5

FIGURE21B

~fIi§§ Files §§!ii=
Name

FIGURE21C

2122

2120

2142

2140

US 6,424,354 Bl
2

BRIEF DESCRIPTION OF THE DRAWINGS

65

FIG. lAis a block diagram of a personal computer system
in accordance with the subject invention;

FIG. IB is a display in accordance with the subject
invention;

FIG. 2 illustrates the tools used to create an application in
accordance with the subject invention;

FIG. 3 is a flow diagram of a command process in
accordance with the subject invention;

FIG. 4 is a checkbox control in accordance with the
subject invention;

FIG. 5 is a checkbox control activation in accordance with
the subject invention;

FIG. 6 is a checkbox update in accordance with the
subject invention;

FIG. 7 is a summary of checkbox control processing in
40 accordance with the subject invention;

FIG. 8 is an illustration of a control panel in accordance
with the subject invention;

FIG. 9 is an illustration of a dialog box in accordance with
45 the subject invention;

FIG. 10 is an illustration of a dialog box color controller
in accordance with the subject invention;

FIG. 11 is an illustration of a radio button in accordance
with the subject invention;

FIG. 12 is a detailed flowchart of menu state processing
in accordance with the subject invention;

FIG. 13 is a picture of a display in accordance with the
subject invention;

FIG. 14 illustrates the detailed logic of atomic execution
55 in accordance with the subject invention;

FIG. 15 sets forth the detailed logic associated with smart
label processing in accordance with the subject invention;

FIG. 16 presents the detailed logic of smart window label
60 processing in accordance with the subject invention;

FIG. 17 illustrates how objects are created and how the
objects communicate with each other during a typical inter­
action with an object that can be moved and selected in
accordance with the subject invention;

FIG. 18 is an object generating notification flowchart for
a notification source object in accordance with the subject
invention;

In this exemplary embodiment, the menu item just created
for the command connects for active notification. It does this
by passing a connection object to the event notification
system. The command is then responsible for connecting the

5 connection object to notifiers affecting whether the com­
mand is active.

Then, the exemplary menu system queries the command
for the enabled state before presenting the menu item on the
display. This processing is accomplished by examining the

10 current system state to ascertain if the function is active in
the current context. Then, the internal state of the menu item
is updated and the menu item is displayed based on the
appropriate appearance state (grayed out or normal).

When a user invokes a command from a menu item, a
15 control or though the direct manipulation of an object, a

document state is modified and notification of the event is
sent to the system. This event automatically informs any
active menu items and assures current status information is
consistent across the operating environment. The notifica-

20 tion message includes the name of the change and a pointer
to the object that sent the notification message.

FIELD OF THE INVENTION

SUMMARY OF THE INVENTION

CROSS-REFERENCES TO RELATED
APPLICATIONS

BACKGROUND OF THE INVENTION

1
OBJECT-ORIENTED EVENT NOTIFICATION
SYSTEM WITH LISTENER REGISTRATION

OF BOTH INTERESTS AND METHODS

This is a 37 C.P.R. §1.53(b)continuation of U.S. patent
application Ser. No. 07/996,775 filed on Dec. 23, 1992, now
U.S. Pat. No. 6,259,446.

Among developers of workstation software, it is increas­
ingly important to provide a flexible software environment
while maintaining consistency in the user's interface. An
early attempt at providing this type of an operating envi­
ronment is disclosed in U.S. Pat. No. 4,686,522 to Hernan- 25

dez et al. This patent discusses a combined graphic and text
processing system in which a user can invoke a dynamic
menu at the location of the cursor and invoke any of a variety
of functions from the menu. This type of natural interaction
with a user improves the user interface and makes the 30

application much more intuitive.
Menu selection should also reflect a consistent interface

with the user regardless of what application is currently
active. None of the prior art references applicant is aware of 35

provides the innovative hardware and software system fea­
tures which enable all application menus to function in a
consistent manner.

This invention generally relates to improvements in dis­
play systems and more particularly to a globally scalable
method for notification of change events arising in an
object-oriented environment such as an automated menu
state processing by integrating menu processing operations
into the operating system.

Accordingly, it is a primary objective of the present
invention to provide a scalable method for notification of
change events arising in an object-oriented environment
such as an automated menu-based system containing size,
state, status and location information. For example, a pre­
ferred embodiment of a menu contains a list of menu items
containing a command and variables that reflect the com­
mand's current appearance. This includes status information
determinative of the menu item's state (enabled/disabled),
its name, its associated graphic, and whether its appearance 50

is currently valid. Each of these are initialized when the
menu item was created. The exemplary embodiment creates
a menu item from a command, where a menu item is another
object data structure containing a command sequence. The
menu item is added to a list of menu items, and initialized
as an invalid appearance. Later when the menu item is
selected from a pull down menu, the appearance state is
recomputed and validated based on the system state and its
status information.

Next, the invention queries a command object for notifi­
cation. In an exemplary embodiment, each command object
has four methods to connect for different types of notifica­
tions:
i) notifications that affect it's name,
ii) notifications that affect is graphic,
iii) notifications that affect whether it's active, and
iv) notifications that affect any data it provides.

US 6,424,354 Bl
3 4

10

mental abstractions for the software developer are very close
to the fundamental concepts that a user must understand to
operate her software. This architecture results in easier
development of sophisticated applications.

This section describes four steps to writing software
employing the subject invention. A user contemplating the
development of an application is typically concerned with
the following questions:
What am I modeling?

For a word processor, this is the text I am entering; for a
spreadsheet, it is the values and formulas in the cells.
How is the data presented?

Again, for a word processor, the characters are typically
displayed in a what-you-see-is-what-you-get (wysiwyg) for-

15 mat on the screen with appropriate line and page breaks; in
a spreadsheet it is displayed as a table or a graph; and in a
structured graphics program (e.g. MacDraw), it is displayed
as a set of graphics objects.
What can be selected?

In a word processing application, a selection is typically
a range of characters; in a structured graphics program it is
a set of graphic objects.
What are the commands that can operate on this selection?

A command in a word processor might be to change the
25 style of a set of characters to bold. A command in a

structured graphic program might be to rotate a graphic
object. FIG. 1B is an illustration of a display in accordance
with the subject invention. A command is illustrated at 41 for
bringing a picture to the front of a display. A presentation of

30 graphic information is illustrated at 40. Finally, a selection
of a particular graphic object, a circle, is shown at 42.

A developer must answer the same four questions asked
by the user. Fortunately, the subject invention provides
frameworks and services for addressing each of these four

35 questions. The first question that must be answered is: What
am I modeling? In a word processing program, the data
includes the characters that make up a document. The data
in a spreadsheet includes the values and formulas in the
cells. In a calendar program, the data includes the times and

40 appointments associated with a given day. The invention
provides facilities that help to model data. There are classes
for modeling specific data types including: text, structured
graphics, sound and video. In addition to these specific
classes, the invention provides a number of other abstrac-

45 tions that support problem modeling, including: collection
classes, concurrency control, recovery framework, and the
C++ language. The class that encapsulates the data model
for a particular data type provides a specific protocol for
accessing and modifying the data contained in the data

50 encapsulator, support for overriding a generic protocol for
embedding other data encapsulators and for being embedded
in other data encapsulators, generating notification to all
registered objects when the data changes, and overriding a
generic protocol for creating presentations of the data.

The next question that must be answered is: how is the
data presented? In a structured graphic program, the set of
graphic objects are typically rendered on a canvas. In a
spreadsheet, it is typically a table of cells or a graph; and in
a presentation program it is a set of slides or an outline. The

60 subject invention provides a "view" of the data contained in
a data encapsulator. The view is created using a "view
system" and graphic system calls. However, playing a sound
or video clip is also considered a presentation of the data.

Next: what can be selected? In a word processing
65 program, a selection is a range of characters; in a structured

graphics program, it is a set of graphics objects; and in a
spreadsheet it is a range of cells. The invention provides

DETAILED DESCRIPTION OF IRE
INVENTION

FIG. 19 presents a flowchart illustrating the detailed logic
associated with selecting the proper user interface element in
accordance with the subject invention;

FIG. 20 is a flowchart illustrating the detailed logic
associated with scrolling in accordance with the subject 5

invention; and

FIGS. 21A, 21B and 21C illustrate window scrolling in
accordance with the subject invention.

The invention is preferably practiced in the context of an
operating system resident on a personal computer such as
the IBM® PS/2® or Apple® Macintosh® computer. A
representative hardware environment is depicted in FIG. lA,
which illustrates a typical hardware configuration of a
workstation in accordance with the subject invention having
a central processing unit 10, such as a conventional
microprocessor, and a number of other units interconnected 20

via a system bus 12. The workstation shown in FIG. 1A
includes a Random Access Memory (RAM) 14, Read Only
Memory (ROM) 16, an I/O adapter 18 for connecting
peripheral devices such as disk units 20 to the bus, a user
interface adapter 22 for connecting a keyboard 24, a mouse
26, a speaker 28, a microphone 32, and/or other user
interface devices such as a touch screen device (not shown)
to the bus, a communication adapter 34 for connecting the
workstation to a data processing network and a display
adapter 36 for connecting the bus to a display device 38. The
workstation has resident thereon an operating system such as
the IBM OS/2® operating system or the Apple System/7®
operating system.

The subject invention is a new object-oriented system
software platform comprised of an operating system and
development environment designed to revolutionize per­
sonal computing for end-users, developers, and system
vendors. The system is a complete, standalone, native oper­
ating system and development environment architected from
the ground up for high-performance personal computing.
The invention is a fully object-oriented system including a
wealth of frameworks, class libraries, and a new generation
object programming environment, intended to improve fun­
damentally the economics of third party application software
development. The subject invention is a fully portable
operating system.

Traditional operating systems provide a set of services
which software developers can use to create their software.
Their programs are very loosely integrated into the overall
operating system environment. For example, DOS applica­
tions take over the entire machine. This means that as far as
the user is concerned, the application is the operating
system. In Macintosh® and Windows operating systems,
applications feel and look similar and they typically support
cutting and pasting between applications. This commonalty 55

makes it easier for users to use multiple applications in a
single environment. However, because the commonalty is
not factored into a set of services and frameworks, it is still
very difficult to develop software.

In the subject invention, writing an "application" means
creating a set of objects that integrate into the operating
system environment. Software developers rely on the oper­
ating system for both a sophisticated set of services and a
framework to develop software. The frameworks in the
subject invention provide powerful abstractions which allow
software developers to concentrate on their problem rather
than on building up infrastructure. Furthermore, the funda-

US 6,424,354 Bl
5

selection classes for all of the fundamental data types that
the system supports. The abstract baseclass that represents a
selection made by a user provides an address space inde­
pendent specification of the data selected. For text, this
would be a numeric range of characters rather than a pair of 5

pointers to the characters. This distinction is important
because selections are exchanged between other machines
when collaborating (in real-time) with other users. The
baseclass also overrides a generic protocol for creating a
persistent selection corresponding to this selection. Persis- 10

tent selections are subclasses of an anchor object and may be
heavier weight than their corresponding ephemeral selec­
tions because persistent selections must survive editing
changes. For example, a persistent text selection must adjust
itself when text is inserted before or after it. Anchors are 15

used in the implementation of hypermedia linking, dataflow
linking and annotations.

The baseclass also provides an override generic protocol
for absorbing, embedding and exporting data contained in a
data encapsulator. Baseclasses are independent of the user 20

interface technique used to create them. Selections are
typically created via direct manipulation by a user (e.g.
tracking out a range of text or cells) but can be created via
a script or as a result of a command. This orthogonality with
the user interface is very important. Baseclasses also provide 25

specific protocol for accessing the data encapsulator. There
is a very strong relationship between a particular subclass of
the encapsulator class and its subclass of a model selection
class.

Finally: what are the commands that can operate on this 30

selection? In a word processing program, a command might
change the style of a selected range of characters and in a
structured graphics program, a command might rotate a
graphic object. The subject invention provides a large num­
ber of built-in command objects for all of the built-in data 35

types as well as providing generic commands for Cut, Copy,
Paste, Starting HyperMedia Links, Completing Links, Navi­
gating Links, Pushing Data on Links, Pulling Data on Links,
as well as many user interface commands. The abstract
baseclass that represents a command made by the user is 40

responsible for capturing the semantics of a user action,
determining if the command can be done, undone, and
redone. Command objects are responsible for encapsulating
all of the information necessary to undo a command after a
command is done. Before a command is done, command 45

objects are very compact representations of a user action.
The baseclass is independent of the user interface technique
used to create them. Commands are typically created from
menus or via direct manipulation by the user (e.g. moving a
graphic object) but could be created via a script. This 50

orthogonality with the user interface is very important.

6
without modification. This differs from current computer
systems, such as the Macintosh computer system. For
example, a scrapbook desk accessory can store any kind of
data, but it can only display data that has a text or quickdraw
picture component. In contrast, the subject invention's
scrapbook displays any kind of data, because it deals with
the data in the form of an object. Any new data type that is
created behaves exactly like the system-provided data types.
In addition, the data in the scrapbook is editable since an
object provides standard protocol for editing data.

The scrapbook example highlights the advantages of data
encapsulators. If software is developed such that it can
handle data encapsulators, an application can be designed to
simply handle a new data type. A new application can
display and edit the new kind of data without modification.

Multi-level Undo

The invention is designed to support multi-level undo.
Implementing this feature, however, requires no extra effort
on the part of a developer. The system simply remembers all
the command objects that are created. As long as the
corresponding command object exist, a user can undo a
particular change to the data. Because the system takes care
of saving the commands and deciding which command to
undo or redo, a user does not implement an undo procedure.

Document Saving, Reliability, and Versioning

A portion of the data encapsulator protocol deals with
filing the data into a stream and recreating the data at another
place and/or time. The system uses this protocol to imple­
ment document saving. By default, a user's data objects are
streamed to a file when saved. When the document is
opened, the data objects are recreated. The system uses a
data management framework to ensure the data written to
disk is in a consistent state. Users tend to save a file often so
that their data will be preserved on disk if the system
crashes. The subject invention does not require this type of
saving, because the system keeps all the command objects.
The state of the document can be reconstructed by starting
from the last disk version of the document and replaying the
command objects since that point in time. For reliability, the
system automatically logs command objects to the disk as
they occur, so that if the system crashes the user would not
lose more than the last command.

The invention also supports document versioning. A user
can create a draft from the current state of a document. A
draft is an immutable "snapshot" of the document at a
particular point in time. (One reason to create a draft is to
circulate it to other users for comments.) The system auto­
matically takes care of the details involved with creating a
new draft.

Benefits Of Frameworks
Collaboration

As mentioned above, a document can be reconstructed by
starting with its state at some past time and applying the
sequence of command objects performed since that time.
This feature allows users to recover their work in the case of
a crash, and it can also be used to support real-time col­
laboration. Command objects operate on selections, which
are address-space independent. Therefore, a selection object
can be sent to a collaborator over the network and used on
a remote machine. The same is true of command objects. A
command performed by one collaborator can be sent to the

65 others and performed on their machines as well. If the
collaborators start with identical copies of the data, then
their copies will be remain "in sync" as they make changes.

Multiple Data Types

Once a new kind of data is implemented, the new data
type becomes a part of the system. Existing software that can
handle data encapsulators can handle your new data type

The benefits of plugging into the abstractions in the 55

invention are greater than providing a conceptual model.
Plugging into the framework provides many sophisticated
features architected into the base operating system. This
means that the framework implements major user features
by calling relatively small methods. The result is that an 60

investment in coding for the framework is leveraged over
several features.

US 6,424,354 Bl

Data Representation

Data representation is concerned with answering the
question of what is the data that I am modeling? The subject
invention provides facilities that help to model data. There
are classes for modeling specific data types, including: text,

20 structured graphics, sound and video. In addition to these
specific classes, the invention provides a number of other
abstractions that help to model a problem: the collection
classes, the concurrency control and recovery framework,
and the C++ language itself. In the subject invention, the

25 class that encapsulates the data model for a particular data
type is a subclass of the encapsulator class.

The Encapsulator Class

Choosing A Representation For Data

The data type designer has both the C++ object model,
and a rich set of standard classes to choose from when
designing a representation for a particular type of data. The
classes provided by the invention should always be consid­
ered before designing unique classes to represent the data.
This minimizes any duplication of effort which may occur

55 by creating new classes which provide similar or identical
function to classes already existing in the system. The most
basic of these is the C++ object model. A designer can create
a class or classes which closely match the mental model of
the user to represent the classes the user deals with.

The invention's foundation classes provide many stan-
dard ways to represent data. Collection classes provide a
number of ways for collecting together related objects in
memory, ranging from simple sets to dictionaries. Disk­
based collections, providing persistent, uncorrupted collec-

65 tions of objects, are also available. Adata type requiring two
(2D) and three dimensional (3D) graphic modeling, such as
a graphical editor, is also supported. Numerous 2D and 3D

A developer creates a container for a particular type of
data representation by creating a derived class of the encap­
sulator class. For each type of data in the system, (e.g.
graphic objects, styled text, spreadsheet cells) a different
derived class must exist which acts as the container for a

35 type's data. Each class of encapsulator provides a type
specific protocol for accessing and modifying the data
contained therein. This protocol is typically used by presen­
tations for displaying the data and by commands for modi­
fying the data. In addition to type specific protocol, the

40 encapsulator class provides generic protocol that supports
the embedding of data encapsulators as "black-boxes" into
other alien types. This protocol must be implemented in the
derived class to support the creation of presentations, editors
and selections for the encapsulated data. A container need

45 only understand this generic protocol to support the embed­
ding of any alien data type.

8
presentation of the data. (Creating such a presentation is part
of the standard data encapsulator protocol.)

The reviewer can create selections in the document, and
link posted notes to the selection. The link between the

5 posted note and selection allows the system to position the
posted note "near" the selection to which it refers. The links
also make the annotation structure explicit, so that the
system can implement standard commands to manipulate
annotations. The contents of the posted note can be any data

10 type implemented in the system, not simply text or graphics.
The contents of a note is implemented using a data
encapsulator, and opening a note results in creating an
editable presentation on that data.

30

15

Annotations

Hypermedia Linking

Creating a selection is done using a command object, so that
all collaborators have the same current selection.

The system uses a feature known as "model based track­
ing" to perform mouse tracking on each collaborator's
machine. The tracker object created to handle a mouse press
creates and performs a series of incremental commands as a
user moves the mouse. These commands are sent to col­
laborators and performed by each collaborator. The result is
that each collaborator sees the tracking feedback as it occurs.
The system also establishes a collaboration policy. A col­
laboration policy decides whether users are forced to take
turns when changing data or can make changes freely. The
invention handles the mechanics of collaboration which
removes the responsibility from an application developer.

7

Persistent selections, also known as anchors, can be
connected by link objects. A link object contains references
to the two anchors that form its endpoints. To the system, the
link is bidirectional; both ends have equal capabilities.
Certain higher-level uses of links may impose a direction on
the link. The single link object supports two standard
features: navigation and data flow. A user can navigate from
one end of the link to the other. Normally, this will involve
opening the document containing the destination anchor and
highlighting the persistent selection. The exact behavior is
determined by the anchor object at the destination end. For
example, a link to an animation may play the animation. A
link to a database query may perform the query.

Links also facilitate data flow. The selected data at one
end of the link can be transferred to the other end to replace
the selection there. In most cases, the effect is the same as
if the user copied the selection at one end, used the link to
navigate to the other end, and pasted the data. The system
takes care of the details involved with navigating from one
end of a link to the other (e.g., locating the destination 50

document, opening it, scrolling the destination anchor into
view, etc.). Similarly, the system handles the details of
transferring data across the link. The latter is done using the
selection's protocol for accessing and modifying the data to
which it refers.

The invention supports a system-wide annotation facility.
This facility allows an author to distribute a document draft
for review. Reviewers can attach posted notes to the 60

document, and when done, return the document to the
author. The author can then examine the posted notes and
take action on each. (An author can also create posted notes
in the document.) A reviewer need not have the same
software as the author. Instead, the reviewer can use a
standard annotation application. This application reads the
data from the author's draft, and creates an annotatable

Scripting

Designing a system to manage the sequence of command
objects also makes it possible to implement a systemwide
scripting facility. The sequence of command objects is
equivalent to a script of the local actions. The scripting
feature simply keeps track of command objects applied to
any document. The scripting facility also uses selection
objects in scripts. This feature provides customization of a
script by changing the selection to which the script applies.
Since command objects include a protocol for indicating
whether they can apply to a particular selection, the system
ensures that a user's script changes are valid.

US 6,424,354 Bl
9 10

Static Presentations

Selectable Presentations

The simplest presentation type is the name of the data.
The name is a text string that indicates the data content or
type. Examples include "Chapter 4", "1990 Federal Income
Taxes", "To Do". Another simple presentation type, an icon,
is a small graphical representation of the data. It usually
indicates the data type. Examples are a book, a report, a
financial model, a sound or video recording, a drawing.
However, they may also display status, such as a printer that
is printing, or indicate content, such as a reduced view of a
drawing. Finally, the thumbnail, is a small view of the model
data. This view may show only a portion of the data in order

25 to fit the available space. Examples are a shrunken drawing,
a book's table of contents, a shrunken letter, or the shrunken
first page of a long document. A browse-only presentation
allows a user to view the data in its normal size but the user
is unable to select or modify any of the data.

65

Selectable presentations allow a user to view, explore, and
extract information from the data. These presentations pro-

35 vide context: what the data is, where the data is, when the
data was. It may help to present the data in a structured way,
such as a list, a grid, as an outline, or spatially. It is also
useful to display the relationships among the data elements,
the data's relationship to its container or siblings, and any
other dependencies.

Selectable presentations may also display meta data. An
example is the current selection, which indicates the data
elements a user is currently manipulating. Another type of
meta data is a hypermedia link between data elements. The
view may also indicate other users who are collaborating on
the data.

Selectable presentations are usually very specific to the
type of the data. They are made up of windows, views, and
other user interface objects which may be customized to best
reflect the data type. Some examples are:
Sound recording-A control panel would facilitate an

audible presentation. Views would display the sound as a
musical score or as a series of waveforms. Views may
include a sample number or time indications.

55 Financial modeL-The model could be viewed as the set of
formulas and other parameters. It could display values
from the model at a particular instance of time or with
specific input values as a spreadsheet or in various graphi­
cal forms.

60 Book.-The model could be viewed as a table of contents,
an index, a list of illustrations. It could be viewed as a
series of pages, a series of chapters, or a continuous text
flow.

Video recording-The model could be viewed as a series of
individual frames or as a continuous presentation. Views
may include track marks, frame number, and time indi­
cations.

data model from the presentation, the invention facilitates
multiple presentations of the same data. Some applications,
like the Apple® Macintosh Finder, already support a limited
form of multiple presentations of the same data. Sometimes
it is useful to be able to display different views of the same
data at the same time. These different views might be
instances of the same class-as in a 3D CAD program which
shows four different view of the same data. For each kind of
presentation, a user was previously required to write a view

10 which can display the model and a set of trackers and
tracking commands which can select and modify the model.

Data Presentation

This section addresses how the system presents data to a
user. Once the data has been represented to the system, it is
the role of the user interface to present the data in an
appropriate and meaningful way to a user. The user interface
establishes a dialogue between the user and the model data.
This dialogue permits a user to view or otherwise perceive
data and gives a user the opportunity to modify or manipu­
late data. This section focuses on data presentation.

The User Interface

A developer creates a class to facilitate the presentation of
data to interact with a data encapsulator. By separating the

modeling objects are provided along with transformation,
matrix classes and 3D cameras. Similarly, the invention
provides a sophisticated text data type that supports full
international text, aesthetic typography, and an extensible
style mechanism. The invention also provides support for 5

time based media such as sound and video. Sophisticated
time control mechanisms are available to provide synchro­
nization between various types of time based media.

Presentation Protocol

The encapsulator class provides a protocol for the creation
of various classes of presentations on the data contained
within the encapsulator. The presentations include a thumb­
nail presentation, a browse-only presentation, a selectable
presentation, and an editable presentation. There is also a 15

protocol for negotiating sizes for the presentations and
fitting the data into the chosen size. Subclasses of the
encapsulator class are responsible for overriding and imple­
menting this protocol to support the embedding of the data
in other encapsulators. The presentations currently sup- 20

ported include:
Thumbnail-This presentation is intended to give the user a

"peek" at what is contained in the encapsulator. It is
typically small in size and may scale-down and/or clip the
data to fit the size.

Browse-only-This presentation allows the user to view the
data in its normal size but the user is unable to select or
modify any of the data.

Selectable-This presentation adds the ability to select data
to the capabilities provided by the browse-only presenta- 30

tion. It is used in annotating to allow annotations to be tied
to selections in the data without allowing modification to
the data itself. The selectable presentation is typically
implemented as a subclass of the browse-only presenta­
tion.

Editable-This presentation adds the ability to modify data
to the capabilities provided by the selectable presentation.
This is the presentation that allows the user to create new
data and edit existing data. Currently, this presentation
provides its own window for editing. It is likely that in the 40

future support will be added for presentations which allow
editing in place. The editable presentation is typically
implemented as a subclass of the selectable presentation.

Change Notification
45

When the data contained in an encapsulator class is
changed, it is necessary to provide clients (e.g. a view on the
data) with notification of the change. Encapsulators rely on
a built-in class for standard notification support to allow the
encapsulator to notify clients of changes to the data repre- 50

sentation. A client can connect to an encapsulator for noti­
fication on specific changes or for all changes. When a
change occurs the encapsulator asks the model to propagate
notification about the change to all interested clients.

US 6,424,354 Bl
11 12

Model Selection

Accessing Specified Data

Standard Editing Protocol

The model selection class provides a protocol for the
exchange of data between selections. By implementing the

Data Specification

Data specification addresses the selection issue of data
processing. If a user must manipulate data contained in a
representation, the data must be able to specify subsets of
that data. The user typically calls this specification a
"selection," and the system provides a base class from which
all selection classes descend. The invention also provides
selection classes for all of the fundamental data types that
the system supports.

The object which contains the specification of a subset of
data in a representation is a model selection class. In the case
of a text representation, one possible selection specification
is a pair of character offsets. In a structured graphics model,
each shape must be assigned a unique id, and the selection

45 specification is a set of unique ids. Neither of the specifi­
cations point directly at the selection data and they can be
applied across multiple copies of the data.

A selection understands the representation protocol for
accessing and modifying data and knows how to find data in
a local address space. Command objects access a represen­
tation's data through data selection, and therefore require no
knowledge of converting from specification to the real data
in the local model. It is the job of the selection object to
provide access to the real data from the address space
independent specification. In a text encapsulator, this pro­
cessing may require querying the encapsulator for the actual

60 characters contained in a range. In a base model such as a
graphical editor the selection will typically hold surrogates
for the real objects. The encapsulator must provide a lookup
facility for converting the surrogate to the real object.

object adds appropriate interests for one or more notifica­
tions from one or more notification source objects. These
interests are defined by the notification source object(s).

The client object asks the connection object to connect to
5 the notification source(s) for notifications specified by the

interests in the connection in function block 1830. Then, in
function block 1840, for each interest in connection, the
connection is registered as interested in the notification with
the notifier in the interest. Next, at function block 1845, the

10 system enters a wait state until a change is detected. When
a system change occurs, control immediately passes to 1850
where a notification source object changes and calls notify
on its notifier with a notification describing the change.

For each connection registered with the notifier as inter-
15 ested in the notification, at function block 1860, the con­

nection is asked to dispatch the notification. In turn, at
function block 1870, the connection dispatches the notifi­
cation to the appropriate method of the notification receiver.
Finally, at function block 1880, the notification receiver

20 takes the appropriate action for the notification, and a test is
performed at decision block 1885 to determine if another
connection is registered with the notifier as interested in
notification. If there is another connection, then control
passes to 1850. If there is not another connection to service,

25 then control passes to function block 1845 to await the next
change.

Data Access

Change Notification

Editable Presentations

Notification Framework Overview

Notification Propagation Flow Chart

Container containing other objects-The objects could be
displayed alphabetically by name, by type or other
attribute, as a set of icons, as a set of thumbnails.

Because there can be many presentations of a single
model active at once, the data can be changed from many
sources, including collaborators. Each presentation is
responsible for keeping itself up to date with respect to the
model data. This is accomplished by registering for notifi­
cation when all or a portion of a model changes. When a
change occurs to data in which the presentation is interested,
the presentation receives notification and updates its view 30

accordingly. Change notification can be generated in any of
the ways listed below. First, change notification can be
generated from the method in the data encapsulator which
actually changes the model data. Second, change notification
can be generated from the command which caused the 35

change. As mentioned earlier, there are benefits to these two
approaches. Generating the notification from within the data
encapsulator guarantees that clients will be notified when­
ever the data changes. Generating the notification from the
command allows "higher-level" notification, and reduces the 40

flurry of notifications produced by a complicated change.

FIG. 18 is an object generating notification flowchart for
a notification source object. Processing commences at ter­
minal1800 and immediately passes to function block 1810 65

where a notification receiver object creates a connection to
itself. Then, at function block 1820 the notification receiver

Editable presentations are similar to interactive presenta­
tions except that they also facilitate data modification. They
do this by allowing direct manipulation of the data with the
mouse or other pointer. They also allow the data to be
manipulated symbolically through menu items and other
controls.

The Notification framework provides a mechanism for
propagating change information between objects. The
framework allows objects to express interest in, and receive
notification about changes in objects on which they depend.
A standard interface is provided for classes that provide
notification to clients. Notifier classes provide notification 50

source objects with the means to manage lists of clients and
dispatch notifications to those clients. Notifier objects
require no special knowledge of the class of objects receiv­
ing notifications. Connection objects provide the dispatch of
notifications from the notifier to specific notification receiver 55

objects. These connection objects allow specialization of
how notifications are delivered to different classes of receiv­
ers. Finally, Notification objects transport descriptive infor­
mation about a change, and interests describe a specific
notification from a notification source object.

Presentations interact with data encapsulators in order to
determine the data and other information to present. Pre­
sentations query the model for the data that is required. The
presentation may present all or only part of the data that is
contained or can be derived from the data in the data
encapsulator.

US 6,424,354 Bl
13 14

User Interface

HandleDo, HandleUndo, and HandleRedo

model command object capture the semantics of user
actions, such as: can be done, undone, and redone. These
subclasses are independent of the user interface technique
used to create them. Unlike MacApp, as soon as the seman­
tics of a user action is known, device events are translated
into command objects by the system.

Command objects capture the semantics of a user action.
In fact, a command represents a "work request" that is most
often created by a user (using a variety of user interface
techniques) but could be created (and applied) in other ways
as well. The important concept is that command objects
represent the only means for modifying the data contained in
a data encapsulator. All changes to the data encapsulator
must be processed by a command object if the benefits of
infinite undo, save-less model, and other features of the
invention are to be realized.

The most favored user interface for issuing commands
involves some sort of direct manipulation. An object respon­
sible for translating device events into commands and "driv­
ing" the user feedback process is known as a tracker. The
invention provides a rich set of "tracking commands" for

60 manipulating the built-in data types. For example, there are
tracking commands for rotating, scaling and moving all the
2D objects in Pink such as lines, curves, polygons, etc.

A common user interface for issuing commands is via
controls or the menu system. Menus are created and a set of

65 related commands are added to the menu. When the user
chooses an item in the menu, the appropriate command is
"cloned" and the Do method of the command is called. The

Creating a new class of command involves overriding a
10 number of methods. The most important three methods to

override are: HandleDo, HandleUndo and HandleRedo. The
HandleDo method is responsible for changing the data
encapsulator appropriately based on the type of command
that it is and the selection the command is applied to. For
example, if the command involves a style change to a range
of characters in a word processor, the HandleDo method
would call a method (or set of methods) in the data encap­
sulator to specify a character range and style to change. A
more difficult responsibility of the HandleDo method is
saving all of the information necessary to "undo" this
command later. In the style change example, saving undo
information involves recording the old style of the character
range. The undo information for most commands is very
simple to save. However, some commands, like find and

25 change may involve recording a great deal of information to
undo the command at a later time. Finally, the HandleDo
method is responsible for issuing change notification
describing the changes it made to the data encapsulator.

The HandleUndo method is responsible for reverting a
30 document back to the state it was in before the command

was "done." The steps that must be applied are analogous to
the steps that were done in the HandleDo method described
above. The HandleRedo method is responsible for "redoing"
the command after it had been done and undone. Users often

35 toggle between two states of a document comparing a result
of a command using the undo/redo combination. Typically,
the HandleRedo method is very similar to the HandleDo
method except that in the Redo method, the information that
was derived the last time can be reused when this command

40 is completed (the information doesn't need to be recalcu­
lated since it is guaranteed to be the same).

User Interface

The user interface for creating specifications is typically
the responsibility of a presentation on the data. A number of
mechanism are available depending on data type and pre­
sentation style. The most favored user interface for creating
a selection is direct manipulation. In a simple graphics
model, objects may be selected by clicking directly on the
object with the mouse or dragging a selection box across
several objects using a mouse tracker. In text, a selection
may be created by as the result of a find command. Another
common way that selections are created is as a result of a
menu command such as "find." After the command is issued,
the document is scrolled to the appropriate place and the text
that was searched for is selected.

45Finally, selections can come from a script (or program-
matically generated) and the result would be the same as if
a user created the selection directly. "Naming" selections for
scripts involve creating a language for describing the selec­
tion. For example, in text, a selection could be "the second
word of the fourth paragraph on page two." The invention's 50

architecture provides support for scripting.

Data Modification

Data Modifications addresses the question: what are the
commands that can operate on this selection? If a user is to 55

modify the data contained in a representation, the system
must be able to specify exactly the type of modification to
be made. For example, in a word processing program, a user
may want to change the style of a selected range of char­
acters. Or, in a structured graphics program, a user may
desire rotation of a graphic object. All user actions that
modify the data contained in a data encapsulator are repre­
sented by "command objects."

The Model Command Object

The abstract base class that represents a command made
by the user is the model command object. Subclasses of the

protocol for type negotiation, absorbing, embedding and
exporting data, derived classes provide support for most of
the standard editing commands. This means that the editing
commands (Cut, Copy, Paste, Push Data, etc.) provided by
the system will function for the represented data type and 5

will not require reimplementation for each application. The
model selection class also provides support directly for the
exchange of anchors and links but relies on the derived
class's implementation of several key methods to support
the exchange of the representation's data:

CopyData must be implemented by the derived class to
export a copy of the specified data. The implementation
creates and returns a new data encapsulator of the requested
type containing a copy of the specified data.

AdoptData must be implemented by the derived class to 15

support absorbing or embedding data into the specification's
associated representation. If the data is to be absorbed it
must be of a type which can be incorporated directly into the
receiver's representation. The absorbed data is added to the
representation as defined by the specification. It is common 20

for many data types to replace the currently specified data
with the newly absorbed data. Any replaced data is returned
in a data encapsulator to support Undo. If the data is to be
embedded, the encapsulator is incorporated as a black box
and added as a child of the representation.

ClearData must be implemented by the derived class to
delete the specified data from the associated representation.
An encapsulator of the representation's native type contain­
ing the deleted data must be returned.

US 6,424,354 Bl
15 16

Filing

Collaboration

Same-time network collaboration means that two or more
people edit the same document at the same time. The system
also establishes the collaboration policy; that is, whether
users are forced to take turns when changing the data or can
make changes freely. A developer does not have to worry
about the mechanics of collaboration or the collaboration
policy.

Supporting Collaborator Selection Styles

To assist in the reduction of confusion and enhance model
selection, the document architecture provides a collaborator
class which contains information about the collaborator's
initials and preferred highlight bundle.

Supporting Multiple Selections

To support multiple selections a user must modify pre­
sentation views because each collaborator has a selection.
When the active collaborator's selection changes the stan­
dard change notification is sent. When a passive collabora­
tor's selection changes a different notification event is sent.
A view should register for both events. Since the action
taken to respond to either event is usually the same,
economy can be realized by registering the same handler
method for both events.

User Interface In Accordance With The Invention

This portion of the invention is primarily focused on
innovative aspects of the user interface building upon the
foundation of the operating system framework previously

Filing is the process of saving and restoring data to and
from permanent storage. All a user must do to make filing
work is to implement the streaming operators for a data
encapsulator. The invention's default filing is "image"

20 based. When a user opens a document, the entire contents of
the document are read into memory. When a user closes a
document, the entire contents of the document are written
back to disk. This approach was selected because it is
simple, flexible, and easy to understand. To store data in a

25 different format, perhaps for compatibility with a preexisting
standard file format, two approaches are possible. First, an
encapsulator class can stream a reference to the actual data,
then use the reference to find the actual data, or a new
subclass can be defined to create and return a file subclass.

The advantage of the first approach is a data encapsulator
can be encapsulated in other documents. The advantage of
the second approach is the complete freedom afforded to
exactly match an existing file format for the complete

35 document.

The system provides a large number of features for "free"
through the anchor facility. All of the HyperMedia com­
mands (CreateLink, PushData, PullData, and Follow) all use
anchors in their implementation. The implementation of the

5 system wide annotation facility uses anchors in its imple­
mentation. The base data encapsulator provides services for
keeping track of anchors and links. However, the user is
responsible for making anchors visible to the user via
presentations. The application must also issue the proper

10 command object when a user selects an anchor. After a user
interface for anchors and links is nailed down, the document
framework provides additional support to simplify process­
ing.

Anchors

More Features

Built-in Commands

The previous sections of this document concentrated on
the foundational features of the invention. There are many
additional facilities in the invention that implement
advanced features. Specifically, these facilities include:
model-based tracking, filing, anchors, and collaboration.

programmer is never involved with device events at all.
Furthermore, because commands know what types of selec­
tions they can be applied to, menu items are automatically
dimmed when they are not appropriate.

Finally, commands can be issued from a script (or pro­
grammatically generated) and the result would be the same
as if a user issued the command directly. The Pink archi­
tecture provides support for scripting; however, at this time,
there is no user interface available for creating these scripts.

Model Based Tracking

Tracking is the heart of a direct-manipulation user inter- 30

face. Tracking allows users to select ranges of text, drag
objects, resize objects, and sketch objects. The invention
extends tracking to function across multiple views and
multiple machines by actually modifying the model. The
tracker issues commands to the model, which posts change
notifications to all interested views.

Model based tracking is the best solution for tracking in
documents, but it does have the drawbacks that: (1) the
model's views must be optimized to provide quick response
to change events and (2) the model must be capable of 40

expressing the intermediate track states.

The invention provides a large number of built-in com­
mand objects for all of the built-in data types as well as
providing generic commands for Cut, Copy, Paste, Starting
HyperMedia Links, Completing Links, Navigating Links, 15

Pushing Data on Links, Pulling Data on Links, as well as
many user interface commands. One of the advantages of
using the frameworks is that these built-in command objects
can be used with any data encapsulators.

Persistent selections or "anchors" are very similar to
selections in that they are specifications of data in a repre- 45

sentation. The difference is that anchors must survive editing
changes since by definition anchors persist across changes to
the data. The implementation of graphics selections
described earlier in the document is persistent. The imple­
mentation of text selections, however, is not. If a user inserts 50

or deletes text before a selection, then the character offsets
must be adjusted. There are a couple of approaches for
implementing text anchors. First, the text representation
maintains a collection of markers that point within the text,
similar to the way styles are maintained. The anchors 55

include an unique id that refers to a marker. When the text
is changed, the appropriate markers are updated, but the
anchors remain the same. Another approach is to maintain an
editing history for the text. The anchor could contain a pair
of character positions, as well as a time stamp. Each time the 60

text was edited, the history would be updated to record the
change (e.g., 5 characters deleted from position X at time T).
When the anchor is used, the system would have to correct
its character positions based on editing changes that hap­
pened since the last time it was used. At convenient times, 65

the history can be condensed and the anchors permanently
updated.

US 6,424,354 Bl
18

Dialog Box

Changing the Data

A Control in Action

Getting to Know You

Everyone gets to know each other a little better as shown
in FIG. 3. The command 310 tells the checkbox 300 which
notifications the data may send in which the control is
certain to be interested (how the command 310 knows is
none of anyone else's business). The checkbox 300, in turn,
connects to the data 320 for the notifications.

Unknown to anyone else, the director told the checkbox
300 the best way to interact with the command 310.
Specifically, it was told about the command's get value
method and a set value method. The checkbox will take
advantage of this a little bit later.

Reflecting the Data

Another collection of controls is called a dialog box. The
controls in a dialog box typically operate upon prototypical

5 data (this is the default, not a requirement). Their actions are
usually collected together into a group and then performed
together when the user presses an Apply button. Dialog
boxes manage the progression of the input focus among its
controls as necessary.

We would now like to present a play in three acts to
illustrate a control in action. FIG. 2 illustrates the various
controls. A play example will be used by way of analogy to
illustrate a control (in this case a checkbox), a command, a
selection, and a data encapsulator.

Checkbox 200 The role of the checkbox is to display a
Boolean value stored in the data encapsulator and to facili­
tate its change. The value is represented by the presence or
absence of a check.

Command 210 The role of the command is to obtain the
value from the data encapsulator and change it upon direc­
tion from the checkbox.

Selection 220 The role of the selection is to be an interface
25 between the command and the data.

Data 230 Data is employed as a target for actions.

Something happens to the data-it sends notifications as
depicted in FIG. 4. The checkbox 400 hears about those for
which it has expressed an interest. In FIG. 4, the notification
from the data expresses to bold the information which is
reflected by placing an X in the checkbox.

The checkbox 510 received notification from the data, and
50 the processing to display the checkbox 510 correctly is

depicted in FIG. 5. It does this by using the command's 520
get value method it happens to know about. Before telling
the checkbox 510 what the correct value is, the command
520 goes through the selection to the data to make sure it
really knows the correct value. The checkbox 510 updates
itself as necessary.

17

Control

discussed. The first aspect of the user interface is a mecha­
nism allowing a user to manage interactions with various
objects or data referred to as controls.

The object with which users interact to manipulate other
objects or data is called a control. Controls use a command
to determine the current state of the object or data. Follow­
ing appropriate interactions with the user, the control 10

updates the command's parameters and causes it to be
executed. Example controls are menus, buttons, check boxes
and radio buttons.

Controls use a command to determine the current state of
the object or data. Following appropriate interactions with 15

the user, the control updates the command's parameters and
causes it to be executed. For example, a checkbox sets a
command parameter to on or off and then executes the
command to change a data value.

Many controls display the current value of the data they 20

manipulate. For example, a check box displays a check only
when a Boolean data value is TRUE. As the data changes,
the control's appearance is kept up to date using a notifica­
tion system described here. The process is similar to the
process used to enable/disable menu items.

When a control is created a command must be specified.
The control makes a copy of this command and stores it in
field fCommand. If the command supplies any data values,
a pointer to appropriate Get and Set methods of the com­
mand must also be specified. The control stores these 30

method pointers in fields fGetMethod and fSetMethod,
respectively. Then, the control connects for notifications that
indicate its data value may be out of date. Each command
provides a method called ConnectData for this purpose.

Each control contains a connection object called fData- 35

Connection indicating the object and method to receive the
notification. This connection object passed as an argument to
the command. The command object calls the connection
object's Connect method to add each notifier and interest
that may affect its data value. When complete, the control 40

calls the connection object's Connect method to establish
the connections as shown in FIG. 3. The control updates its
data value from its command. It does this by calling the Get
method of the command (fCommand->(*fGetMethod)()).
The control stores this value in an appropriate field (e.g. a 45

checkbox stores it in a Boolean field named fChecked) as
depicted in FIG. 5. Then, the control updates its appearance.
It performs this action by calling the view system's invali­
date method, indicating which portion of the screen needs
updating.

Finally, the data changes and notification is sent. At some
point, a command is executed which changes the value of
the data being reflected by the control. This command could
be executed from a control, menu item, or through direct 55

manipulation. The control receives the notification as shown
in FIG. 4, and control is passed to await the next user
selection.

A Control Panel in Action

A control panel is nothing more than a simple window that
contains a set of controls as shown in FIG. 8. These controls

The user now enters the scene and gives the checkbox 600
60 a nudge as shown in FIG. 6. The checkbox 600 uses the

command's 610 set value method to set the data's 620 value
through the selection. The entire process is reviewed in FIG.
7.

Control Panel

One collection of controls is called a control panel. The
controls in a control panel typically operate upon actual data
(this is the default, not a requirement). Their actions are
usually immediate and are independent from one another.
Control panels manage the progression of the input focus 65

among its controls as necessary. It is likely that control
panels will be shared across all user interfaces in the system.

US 6,424,354 Bl
19 20

Classes

Control

The Control Interest

A single notifier is shared among many subclasses of
controls. In order to express interest in a particular control
instance, the interest must be specialized. A control interest
is an interest that contains a pointer to a specific control. This
class is an internal class that is usually used as is, without
subclassing.

5

The following section describes the classes of the controls
20 and dialog areas and their primary methods.

A control is the user interface to one or more commands.
The control displays information about a command, such as
its name and whether it is active in the current context.
Following appropriate user interaction, the control causes a
command to be executed. When appropriate, the control
obtains the current value of data the command modifies and
displays it to the user. It may set a command parameter that
indicates a new value of this data before executing the
command.

Methods to create a selection on the control, with addi­
tional specification of a command within the control as an
option. Lookup command is a pure virtual function in order
to give subclasses flexibility in how many commands they
contain and how they are stored.

Methods that are called when the presentation is opened
and closed. When the presentation is opened the control
connects for notifications that may affect its state. When the
presentation is closed these connections are broken.

Methods that are called when the presentation is activated
and deactivated. When the presentation is activated, some
controls connect for notifications that are valid only when

45 active. Deactivating the presentation breaks these connec­
tions.

Methods that control uses to connect to and disconnect
from notifiers that affect whether the control is enabled.

50 ConnectEnabledNotifiers connects to the notifiers specified
by commands when the control is opened. Disconnect­
EnabledNotifiers breaks these connections when the control
is closed.

Methods that receive notifications indicating that some­
55 thing happened affecting the control's presentation of a data

value. This method does nothing by default.

Methods for notification. Create interest creates an inter­
est specialized by the control instance. Notify is overloaded
to send a notification and swallow the interest.

blue components of the color. These parameters are
displayed and set by the sliders in response to user
interaction. When the Apply button is pressed, this com­
mand is executed and the new color is set. The internal
actions accompanying the color editor example, are
depicted in FIG. 10. The Red 1000, Green 1010, and Blue
1020 slides contain a TFloatControlCommand. These
commands contain a single floating point value which the
control displays. As the user adjusts the slider, it updates
this value and executes the command.
The selection for the TFloatControlCommand specifies

the TSetColor command within the Apply 1040 button. One
of its parameters is set when each TFloatControlCommand
is executed. Finally, when the user presses the Apply 1040

15 button, the TSetColor command is executed and the selected
color 1050 is changed.

A Color Editor

A Sound Control Panel

As an example dialog box, consider the color editor set
forth in FIG. 9. It contains three sliders, one for the red 900,
blue 910, and green 920 components of the color. After
adjusting the sliders to the desired values, the user presses
Apply 930 to change the color of the selection.
Red 900, Green 910, Blue 920 To the user, these sliders are

identical, except for their label. As with all controls, each
slider contains a command that is executed following user
interaction. Unlike many controls, especially those in a
control panel that immediately affect the selected data, the 60

command contained by these sliders displays and modi­
fies the value of a parameter of another command. In this
case, it is one of the red, green, or blue parameters of the
command contained within the Apply button.

Apply 930 The Apply button contains a TSetColor command 65

that changes the color of the selection when executed. It
has three parameters, one for each of the red, green, and

A Dialog Box in Action

A dialog box is similar to a control panel, in that it is a
simple window containing a set of controls. However,
instead of the controls operating upon the selected data, they
operate upon parameters of another command. Only until
the Apply button is pressed is the real data modified.

contain a command that operates upon the current selection.
The control is enabled if the command is active. Following
appropriate interaction with the user, the control executes
the command, causing the data to change.

As an example control panel, consider the sound control-
ler illustrated in FIG. 8. This control panel contains four
buttons 800, 802, 804 and 806 for controlling sound play­
back. Each button performs as described in the "A Control 10

in Action" section above.
Play 800 This control contains a TPlay command. This

command is active only under certain conditions, making
the control enabled only under those conditions. First, a
sound must be selected in the appropriate data encapsu­
lator. Next, it must not be playing already. Finally, the
current sound position must be somewhere before the end.
When pressed, the Play button executes the TPlay
command, causing the selected sound to come out of the
speaker.

Step 802 This control contains a TPlay command, too. How
is this, you ask? Well, since I am making this up, we can
pretend that the TPlay command takes a parameter indi­
cating the duration it is to play. For the purposes of the
step button, it is set to a single sample. The Step button is 25

enabled only under the same conditions as described for
the Play button. When pressed, the Step button executes
the TPlay command, causing the selected sound to come
out of the speaker.

Stop 804 This control contains a TStop command. The Stop 30

button is enabled only if the selected sound is currently
playing. When pressed, the Stop button executes the
TStop command, causing the selected sound to stop
playing and to set the current sound position to the
beginning. 35

Pause 806 This control contains a TStop command, too.
Unlike the Stop button, however, this TStop command is
set to not rewind the sound to the beginning. Pressing the
Play or Step buttons continue from where the playback
left off. 40

US 6,424,354 Bl
22

The Slider

TMultiControl

The Checkbox

A multicontrol is the abstract base class for controls that
present several commands and causes them to be executed
following appropriate user interaction. Examples of this type
of control are radio buttons and menus.

A checkbox is the user interface to a command that sets
a Boolean value. Following appropriate user interaction, the
checkbox calls a command method to change the value and
executes the command. This class is normally used without
subclassing; just set the command, its value getter and setter,
and away you go.

A slider is a unicontrol that displays a single floating point
value and allows it to be changed following appropriate user
interaction. Examples of sliders were presented in FIGS. 9

30 and 10.

Methods that are called when the presentation is activated
and deactivated. When the presentation is activated, some
controls connect for notifications that are valid only when
active. When deactivated, these connections are broken.

5 When the presentation is activated, buttons register for key
equivalent notification. This connection is broken when the
presentation is deactivated.

Methods that control users connecting to and disconnect­
ing from notifiers that affect the control's presentation of a

10 data value. Connect data notifiers connects to the notifiers
specified by commands when the control is opened. Dis­
connect data notifiers breaks these connections when the
control is closed. Controls that do not display a data value
(e.g. button) may override connect data notifiers to do

15 nothing.

The Control Presenter

TControlSelection

A control selection specifies a single control, and option­
ally a command within it, that is wrapped in a control
presenter and stored in a presentation.

Methods to access a command within the control. These
may return an invalid value if no command was specified. 35

21
The Control Notification

A single notifier is shared among many subclasses of
controls. In order to distinguish which control sent the
notification, the notification must be specialized. A control
notification is a notification containing a pointer to the
control that sent the notification. This class is usually used
as-is, without subclassing.

A control presenter wraps up a control so it can be
contained by a presentation data encapsulator. It implements
standard behaviors that all presenter objects implement. This
class is usually used as-is, without subclassing.

Methods that are called when the presentation is opened
and closed. They do nothing by default. A subclass must
implement these methods for the object it wraps. For
controls, these methods are delegated directly to the control.
When the presentation is opened, the control connects for
notifications that may affect its state. When closed, the 20

connections are broken.
Methods that are called when the presentation is activated

and deactivated. They do nothing by default. A subclass
must implement these methods for the object it wraps. For
controls, these methods are delegated directly to the control. 25

When the presentation is activated, some controls connect
for notifications that are valid only when active. When
deactivated, the connections are broken.

TUniControl

TCommand

TRadioButton

A radio button is a multicontrol that displays two or more
Boolean values and allows them to be changed following
appropriate user interaction. The radio button enforces the
constraint that exactly one button is selected as shown in
FIG. 11. If Paper is selected, then the circle at 1100 is

45 blackened. If Plastic is selected, then the circle at 1110 is
selected. Both cannot be selected.

A command encapsulates a request to an object or set of
objects to perform a particular action. Commands are usu­
ally executed in response to an end-user action, such as
pressing a button, selecting a menu item, or by direct
manipulation. Commands are able to provide various pieces
of information about themselves (e.g. name, graphic, key

55 equivalent, whether they are active) that may be used by a
control to determine its appearance. Subclasses must imple­
ment a method to examine the current selection, active user
interface element, or other parameters in order to decide
whether the command is active. Subclasses must override
get active interest list to return notification interests that may
affect whether this command is active.

FIG. 12 is a flowchart depicting the detailed logic in
accordance with the subject invention. The flowchart logic
commences at 1200 and control passes directly to function

65 block 1210 where a command objects are added to a menu.
The steps carried out by this function block are: 1) create
menu item from a command, where a menu item is another

TButton

A unicontrol is the abstract base class for controls that
present a single command and causes it to be executed
following appropriate user interaction. Examples of this type 40

of control are buttons and checkboxes.
Methods to specify the command that is presented and

executed by the control. Notification is sent to registered
connections when the command is changed.

Methods the control uses to connect to and disconnect
from notifiers that affect whether the control is enabled.
ConnectEnabledNotifiers connects to the notifiers specified
by commands when the control is opened. Disconnect­
EnabledNotifiers breaks these connections when the control 50

is closed.
Method that receives notifications indicating that some­

thing happened affecting whether the control should be
enabled. UpdateEnabled checks whether the command is
active and calls Enable and Disable as appropriate.

Methods that control uses to connect to and disconnect
from notifiers that affect the control's presentation of a data
value. ConnectDataNotifiers connects to the notifiers speci­
fied by commands when the control is opened. Disconnect­
DataNotifiers breaks these connections when the control is 60

closed. Controls that do not display a data value (e.g. button)
may override connect data notifiers to do nothing.

A button is a unicontrol that executes its command when
pressed. This class is normally used without subclassing;
just set the command and away you go.

US 6,424,354 Bl
23 24

Immediate

Delayed

Controls that are designed to not change the real data must
operate on prototypical data, instead. The real model data is
not changed until the user performs another action, such as
pressing the OK button. This is accomplished in two ways:

Dialog Boxes & Control Panels

By using command objects in different ways, we can
control two independent behaviors of a group of controls.
The first is whether they affect the data immediately, or
whether the user must press OK before the settings take
effect. The second is whether they are independent from one
another, or whether the settings represent an atomic opera­
tion.

Controls contain commands. As the user manipulates the
control, the control sets parameters in the commands and
cause it to be executed. Commands operate on model data
specified by a selection.

is provided by selections, anchors, and links. Data models
may be embedded into any other. Users interact with models
through presentations (e.g. icon, thumbnail, frame, window,
dialog, control panel) that are provided by an associated user

5 interface. Data models delegate all presentation creation and
access methods to another object, called the user interface.

A user interface is a model containing a set of presenta-
tions (e.g. icon, thumbnail, frame, window) for a particular
model. When required, presentations are selected from those
already created based on the type of presentation desired, the
user's name, locale, and other criteria. If the desired pre-
sentation is not found, a new presentation is created and
added to the user interface by copying one from an associ­
ated archive. Presentations may be deleted when persistent
presentation information (e.g. window size and location,
scroll positions) is no longer required.

A presentation contains a set of presentable objects that
wrap user interface elements (e.g. menus, windows, tools)
used to view and manipulate data. Presentations provide a
reference to the data these objects present. Presentations
install or activate presentable objects when the presentation
is activated. Similarly, these objects are removed or deacti­
vated when the presentation is deactivated. Presentations are
identified according to their purpose (e.g. icon, thumbnail,
frame, window) and retain yet-to-be-determined criteria
(e.g. user identity) for later selection.

A presentation is made up of a collection of presentable
objects (e.g. user interface elements) that are displayed on
the screen or are otherwise available when the presentation
is open or active.

Presentations are created from template presentations
contained in an archive. These are made up of objects such
as user interface elements, which are, in turn, made up of
smaller objects such as graphics and text strings.

An archive is a model containing a set of template objects,
including user interface elements (e.g. windows, menus,
controls, tools) and presentations (e.g. icon, thumbnail,
frame, window).

Controls that affect the data immediately contain a com­
mand that contains a selection that specifies real model data.
As the user manipulates the control, the command causes
this data to change. As the data changes, it sends change

60 notification so that views and controls depending on the state
of the data can accurately reflect the current state.

Presentation Templates and Persistence

Data presentations are created from templates and saved
across sessions in a user interface object. The container for
all data in the system is a model. A model contains and 65

facilitates the manipulation of data. Data exchange is facili­
tated through cut, copy, and paste operations. Data reference

object data structure containing a command, 2) add a menu
item to a list of menu items, and 3) mark the menu's
appearance is invalid in data structure Nalid. Then, later
when the menu is pulled down, the appearance is recom­
puted based on the system states

Each menu is a view. Views contain size and location
information. Each menu contains a list of menu items. Each
menu item contains a command and variables that reflect its
current appearance. This includes whether the menu item is
enabled (Boolean fEnabled), its name (TTextLabel tName), 10

its graphic (TGraphicLabel fGraphic), and whether its
appearance is currently valid (Boolean Nalid). Each of these
variables are determined by asking the command when the
menu item was created.

Next, a query is sent to the command object for notifi- 15

cation interests as depicted in function block 1220. Each
command has four methods to connect for different types of
notifications: i) notifications that affect it's name, ii) notifi­
cations that affect a graphic, iii) notifications that affect
whether the command is active, and iv) notifications that 20

affect any data. In this case, the menu item just created for
the command connects for active notification. It does this by
passing a connection object to ConnectActive. The com­
mand is then responsible for connecting the connection
object to notifiers affecting whether the command is active. 25

Then control is passed to function block 1230 to query a
command for the enabled state when it is necessary to draw
a menu item. To draw a menu item, menu item calls method
"IsActive" for its command. The command looks at what­
ever system state it wants to and returns whether it is active 30

as depicted in decision block 1240 in the current context
(e.g. some commands only are active when a particular type
of window is in front, or when a particular type of object is
selected). Then, a menu item updates its internal state (a
Boolean value in each menu item) and appearance as shown 35

in function block 1250 and 1260 to match the value returned
by the command.

Whenever a user action invokes any command as shown
in input block 1270, a user causes a command to be 40

executed. This could be from a menu item, control, or
through direct manipulation of an object. This action causes
a document state to be modified as shown in function block
1280, and a document sends notification as shown in func­
tion block 1290. When a document sends notification, the 45

following steps are executed: 1) any menu item (or other
control) connected for the notification sent by the document
receives a notification message. This message includes the
name of the change as well as a pointer to the object that sent
the notification) a menu item then updates its state, and 50

control is passed back to function block 1230 for further
processing.

FIG. 13 is an illustration of a display in accordance with
the subject invention. The menu item is Edit 1300 and has
a number of sub-menu items associated with it. Undo 1310 55

is an active menu item and can thus be selected to carry out
the associated functions. Redo1320 is inactive and is thus
presented in a greyed out fashion and cannot be selected at
this time. A checkbox is also shown at 1360 as part of the
debugging control panel 1350.

25
US 6,424,354 Bl

26

Labels

Labels are graphical objects that contain a graphic or text
string. They are used to identify windows, menus, buttons,
and other controls. Labels are able to alter their appearance
according to the state of their container. They are drawn on

the stack is undone. If not immediately redone, it is thrown
away. Then, at function block 1410, a user manipulation of
a control is detected. The manipulation of a control changes
the command's data value, as appropriate as set forth in

5 function block 1430, and executes the control. For example,
a checkbox toggles the command's fChecked field between
oand 1. Finally, the command is recorded on the undo stack
so it can be subsequently undone as shown in function block
1440.

When a user manipulates the control, the control's com-
mand is executed and a data value within the command of
the OK button is changed. As the user manipulates each
control in the dialog box, the control's command is executed
and a data value within the command of the OK button is
changed. Thus, when a user presses the OK button, the
command in the OK button updates the real model data to
match the data values contained within itself as manipulated

60 by the control's commands. This processing is repeated until
control processing is completed.

Delayed Command Execution in Dialog Boxes

The object with which users interact to manipulate other
objects or data is called a control. Example controls are
menus, buttons, check boxes, and radio buttons. Each con­
trol contains a command, which implements an end-user
action. Commands operate on data that is specified by a
selection object. As the user manipulates the control it sets
parameters in the command and causes it to be executed,

35 thus changing the data value. Delaying changing of data
until the user performs another action is one aspect of the
subject invention. For example, controls in a dialog box may
not want to change any data values until the user presses the
OK button.

When a control is created a command must be specified.
The control makes a copy of this command and stores it in
field fCommand. If the command supplies any data values,
a pointer to appropriate Get and Set methods of the com-

45 mand must also be specified. The control stores these
method pointers in fields fGetMethod and fSetMethod,
respectively. The data that is modified by a command is
specified by a selection object. Normally, this selection
object specifies real model data. Instead, a selection object

50 that specifies the data value within the command of the OK
button.

As a user subsequently manipulates each control in the
dialog box, as detected in decision block 1450, then control
passes to function block 1430. However, if a user presses
OK as detected in decision block 1460, then control passes
to function block 1420. Finally, when each control in the

15 dialog box is set to the user's satisfaction, the user presses
the OK button. All of the commands executed since the mark
was placed on the undo stack in function block 1440 are
collected together into a single command group and placed
back onto the undo stack as depicted in function block 1470.

20 A command group is a command that collects many com­
mands together. When executed, undone, or redone, the
command group executes, undoes, or redoes each command
in sequence. The command group is then placed back onto
the undo stack where it can be undone or redone as a single

25 atomic operation.

Cancel

Atomic

Atomic Command Execution in Dialog Boxes

The control contains a command that contains a selection
that specifies the control itself. As the user manipulates the
control, the command causes the control's value to change,
but no other model data. When the user presses OK, a
command in the OK button changes the real model data to
match the values in each control the user may have manipu­
lated.

The object with which users interact to manipulate other
objects or data is called a control. Example controls are
menus, buttons, check boxes, and radio buttons. Each con­
trol contains a command, which implements an end35 user
action. Commands operate on data that is specified by a
selection object. As the user manipulates the control it sets
parameters in the command and causes it to be executed,
thus changing the data value.

Controls that act independently from one another require
represent actions that can be individually undone after the 55

control panel or dialog session is complete. This is the
normal behavior of commands once they are executed by
controls. Other sets of controls are designed to work together
and should be undone and redone as an atomic operation.
This is the subject of this patent.

The detailed logic of the atomic execution is set forth in
the flowchart presented in FIG. 14. Processing commences
at terminal 1400 where control is immediately passed to
function block 1410 where a dialog box is activated. When
the dialog box is activated, a mark is placed on the undo 65

stack. The undo stack is a list of all commands the user has
executed. When undo is pressed, the command on the top of

Other sets of controls are designed to work together and
should be undone and redone as an atomic operation. This is
accomplished by putting a mark on the undo stack when the
dialog box or control is started. When finished, either by
dismissing the control panel or when the user presses an OK
button (as in II B above), all of the commands executed since
the mark was placed on the undo stack are collected together 30

into a single command group. This group can then be undone
or redone as a single group.

Independent

Controls that act independently from one another require
represent actions that can be individually undone after the.
control panel or dialog session is complete. This is the
normal behavior of commands once they are executed by
controls.

Control panels containing a CANCEL button (usually
accompanied by an OK button, as in II B above) us a
technique similar to that described III B above. A mark is put
on the undo stack when the dialog box or control panel is
started. If the user presses the CANCEL button, all com­
mands placed on the undo stack since the mark are undone. 40

This technique works regardless of whether the controls
affect the data immediately or not.

The control contains a command that contains a selection
that specifies a parameter of the command contained by the
OK button. As the user manipulates the control, the com- 10

mand causes the OK button's command to change. When the
user presses OK button, the OK button's command changes
the real model data to match the values contained in itself.

US 6,424,354 Bl
28

Backgrounds

A decoration that is drawn behind another object is called
a background. One type of background is drawn so as to

Decorations

Many of the visual aspects of user interface elements are
common among many elements. Examples are shadows,
borders, and labels. The individual visual features are
referred to as decorations. Decorations can be combined
with other graphics to form the visual appearance of specific
user interface elements, such as windows and controls. The
subject invention supports many different types of decora­
tions.

55

background. When highlighted, labels are drawn on a white
background. Otherwise, the label is drawn normally.

The next processing occurs when a label is activated/
deactivated as shown in function block 1530. When the

5 control is activated or deactivated, it tells the label by calling
the SetActive method. The control then indicates its appear­
ance needs updating by calling Invalidate with an argument
indicating the portion of the screen that needs to be redrawn.
Then, at function block 1540, processing occurs when a

10 control is enabled/disabled. When the control is enabled or
disabled, it tells the label by calling the SetEnabled method.
The control then indicates its appearance needs updating by
calling Invalidate with an argument indicating the portion of
the screen that needs to be redrawn.

A test is then performed at decision block 1550 to
15 determine if a control is selected or unselected. When the

control is selected or unselected, it tells the label by calling
the SetSelected method. The control then indicates its
appearance needs updating by calling Invalidate with an
argument indicating the portion of the screen that needs to

20 be redrawn, and control is passed to function block 1520 for
further processing.

Smart Window Labels

A title is displayed in a window in order to indicate its
25 purpose. For example, the title for a window to edit a

document is usually the name of the document. A label
object is used to keep track of the title. This label is a
graphical object containing a graphic or a text string. As the
window changes state, the label automatically adjusts its
appearance, without requiring the developer to write addi-

30 tional code. Windows can be either active or inactive. Smart
Window label processing is flowcharted in FIG. 16 and the
detailed logic is explained with reference thereto.

Processing commences in FIG. 16 at terminal 1600 where
control is immediately passed to function block 1610 for the

35 title to be initialized. A window title is specified by a
developer when a window is created. This title is stored in
a TLabel object called fTitle. The control tells the title
whether it is currently active or inactive by calling method
SetActive. Then, the at function block 1620. When a win-

40 dow is drawn, it calls the Draw method of its fTitle object,
causing the title to appear on the screen. If inactive, the title
is drawn dimmer than normal. This is done by manipulating
the saturation components of the HSV color model. The
saturation is multiplied by 0.45 when inactive. Otherwise,

45 the title is drawn normally.
The next step is processed at function block 1630 when

the title is activated/deactivated. When a window is acti­
vated or deactivated, it tells its fTitle object by calling the

50 SetActive method. The window then indicates its appear­
ance needs updating by calling Invalidate with an argument
indicating the portion of the screen that needs to be redrawn.
Then, control is passed back to function block 1620 for
redrawing the title to reflect its new state.

Inactive

Disabled

Smart Control Labels

27
a medium-gray background and appear naturally only when
no special state must be indicated. Labels modify their
appearance when inactive, disabled, or selected.

Control labels are dimmed when the control does not
apply in a particular context. Graphic labels are blended with
46% white when inactive, in order to appear dimmed. For
text labels, the disabled paint is derived from the natural
paint by manipulating the saturation component of the HSV
color model. The saturation is multiplied by 0.54 when
disabled.

Window titles are set to be inactive when the window is
not front-most. Similarly, control labels are set to be inactive
when the control is not in the front-most window or other
container. Graphic labels are blended with 55% white when
inactive, in order to appear dimmed. For text labels, the
inactive paint is derived from the natural paint by manipu­
lating the saturation component of the HSV color model.
The saturation is multiplied by 0.45 when inactive.

Controls use a command to determine the current state of
the object or data. Following appropriate interactions with
the user, the control updates the command's parameters and
causes it to be executed. For example, a checkbox sets a
command parameter to on or off and then executes the
command to change a data value. Controls display a label to
indicate its function. This label is a graphical object con­
taining a graphic or a text string. As the control changes
state, the label automatically adjusts its appearance, without
requiring the developer to write additional code. These states
include active/inactive, enabled/disabled, and selected/
unselected.

FIG. 15 sets forth the detailed logic associated with smart
label processing which commences at the start terminal 1500
where control is immediately passed to 1510 for smart label
initialization. When the control is created, its label is ini­
tialized with a text string or graphic provided by its asso­
ciated command. Each command provides methods called
GetGraphic and GetName for this purpose. The control tells
the label whether it is currently active or inactive by calling
method SetActive. Similarly, the control calls method Set­
Enabled to tell the label whether it is enabled, and SetSe­
lected to tell the label whether it is currently being selected
by a user.

The next step in smart label processing occurs at function
block 1520 when the label is drawn. When the control is
activated, it calls the Draw method of its label, causing the
label to appear on the screen. If inactive, the label is drawn
more dimly than normal. This is done by manipulating the 60

saturation components of the HSV color model. The satu­
ration is multiplied by 0.45 when inactive. If disabled, the
label is drawn more dimly than normal. This is done by
manipulating the saturation components of the HSV color
model. The saturation is multiplied by 0.54 when the label 65

is disabled. If selected, the label on a highlighted back­
ground. Labels are normally drawn on a medium-gray

Selected

Control labels are highlighted as the control is being
manipulated. Graphics and text are drawn in their natural
state, but on a white background, when highlighted.

US 6,424,354 Bl
30

automatically from the fill paint. This is accomplished by
manipulating the saturation and value components of the
HSV color model. The saturation is multiplied by 0.8. The
value is multiplied by 1.25, with a maximum value of 1.

Shadow Paint

Separating Input Syntax From Semantics

A graphical user interface is manipulated by moving a
mouse, clicking on objects to select them, dragging objects
to move or copy then, and double-clicking to open them.
These operations are called direct manipulations, or inter-
actions. The sequence of events corresponding to a user
pressing, moving, and releasing a mouse is called an input
syntax. Certain sequences of events are used to indicate
particular actions, called semantic operations.

The separation of the code that understands the input
syntax from the code that implements semantic operations is

30 the subject of this patent. This processing is embodied in
objects called Interacts and Intractable, respectively. FIG. 17
illustrates how these objects are created and how the objects
communicate with each other during a typical interaction
with an object that can be moved and selected.

35
Processing commences at terminal 1700 where control is

passed immediately to function block 1710 to determine if
the mouse button has been pressed. An event is sent to the
object responsible for the portion of the screen at the

40 location where the mouse button was pressed. This object is
called a View. Then, at function block 1720 the Interactor is
created to parse the input syntax. This is done by calling the
CreateInteractor method of the view. When the Interactor is
created, pointers to objects that implement possible user

45 actions are passed as parameters.
For the purposes of this discussion, assume the user

pressed the mouse button down on an object that can be
selected and moved. In this case, an object that implements
selection and an object that implements movement for the

50 target object are passed as parameters to the Interactor. The
initial View could implement both of these behaviors, or
they could be implemented by one or two separate objects.
The object or objects are referred to collectively as the
Interactable.

The Interactor is started at function block 1730. This
processing returns the Interactor to the View and com­
mences processing of the Interactor. This is accomplished by
calling the Interactor's Start method and passing the initial
mouse event as a parameter. The Start method saves the

60 initial mouse event in field fInitialEvent. Since only one
mouse event has been processed thus far, the only action
possible is selecting. The Interactor enters select mode by
setting variable fInteractionType to constant kSelect. It asks
the Interactable to begin the selection operation by calling its

65 SelectBegin method.
Then, the Interactor waits for a short time to pass as

shown in function block 1740. A new mouse event is sent to

The shadow paint can be used to draw lines where the
object would be shaded if it were an actual three­
dimensional object. The shadow paint is stored by the
decoration in a TCoior field called fShadowPaint. The
shadow paint may be specified by the developer when the
decoration is created. However, if no shadow paint is
specified, it is computed automatically from the fill paint.
This is accomplished by manipulating the saturation and

15 value components of the HSV color model. The saturation is
multiplied by 2 with a maximum value of 1. The value is
divided by 2.

29

Borders

Fill Paint

Frame Paint

Decoration Colors

appear flush with the surrounding drawing surface. It may be
drawn with or without a frame. Another type of background
is drawn with highlighting and shadow so it appears to be
raised above the surrounding drawing surface. The final type
of background is drawn with highlighting and shadow so it 5

appears to be recessed beneath the surrounding drawing
surface.

An example use of these backgrounds is a button. Nor­
mally the text or graphic that describes the button is drawn
on a raised background. When pressed by the user, the text 10

or graphic is redrawn on a recessed background. If the
button is inactive, such as when another window is active,
the text or graphic of the button could be drawn dimly on a
flush background.

Highlight Paint

The highlight paint is used to draw lines where light
would hit the object if it were an actual three-dimensional
object. The highlight paint is stored by the decoration in a
TCoior field called fHighlightPaint. The highlight paint may
be specified by the developer when the decoration is created.
However, if no highlight paint is specified, it is computed

A decoration that surrounds another object or area is
called a border. Example borders are frames and shadows. A
frame is a border that surrounds another graphic, much like 20

a frame encloses a painting in the real world. Like
backgrounds, frames can be drawn to appear recessed below,
flush with, or raised above a surrounding drawing surface. A
shadow is a special type of border that adds a shadow around
an object to make it appear as if it floats above the sur- 25

rounding surface.

The fill paint represents the decoration's primary color.
All other paints are derived from the fill paint. The fill paint
is stored by the directoration in a TCoior field called
fFillPaint. The fill paint is normally specified by the devel­
oper when the decoration is created. However, if no color is
specified, a medium gray is selected.

The frame paint is used to draw a line around the
decoration to provide visual contrast. The frame paint is
stored by the decoration in a TCoior field called fFrame­
Paint. The frame paint may be specified by the developer
when the decoration is created. However, if no frame paint
is specified, it is computed automatically from the fill paint. 55

This is accomplished by manipulating the saturation and
value components of the HSV color model. The saturation is
multiplied by four, with a maximum value of 1. The value
is divided by four.

Many of the visual aspects of user interface elements are
common among many elements. Examples are shadows,
borders, and labels. Each of these individual visual features
are referred to as a decoration. Decorations can be combined
with other graphics to form the visual appearance of specific
user interface elements, such as windows and controls.
Some decorations use highlighting and shadows to appear as
if they are above or below the surrounding drawing surface.
Decorations are able to derive automatically these highlight­
ing and shadow paints.

US 6,424,354 Bl
31 32

Interaction Framework System

Users of an object oriented operating system's graphical
user interface often move a mouse, click on objects to select
them, drag objects to move or copy then, and double-click
to open an object. These operations are called direct
manipulations, or interactions. The sequence of events cor­
responding to a user pressing, moving, and releasing the
mouse is called the input syntax. Certain sequences of events
are used to indicate particular actions, called semantic

data. A command is sent to the data model to indicate that
the user wants to view or edit the data. This command is
called a TOpenPresentationCommand. A presentation is a
set of user interface elements that, together, allow the user to
view or edit some data. Presentations are stored across
sessions in User Interface object, thus maintaining continu-
ity for the user. User interface elements are stored on disk
until needed in memory. They may be required as part of a
data presentation the user has requested, or they may be
needed for translation or another localization process. Each
user interface element contains an ID which uniquely ref-
erences that element. However, all localized versions of the
same user interface element share a single ID.

In order to differentiate the localized versions, the par­
ticular language, writing direction, and other cultural param­
eters are stored with each localized user interface element.
Together, these parameters are referred to as the locale. All
of the user interface elements are stored in a file. This file is
organized like a dictionary, with one or more key/value
pairs. The key is an object which combines the ID and the
locale. The value is the user interface element itself.

A new presentation must be created next at function block
1920. If an appropriate presentation does not already exist,
a new one must be created from a template by the user
interface Archive. A new presentation is created from a
template stored in the archive by calling its CreatePresen-
tation method. A presentation type is passed to this method
as a parameter. This type includes such information as the
type of data to be displayed, whether it is to be in its own
window or part of another presentation, and so on. Finally,
at function block 1930, an Archive builds the presentation,
selecting user interface elements according to locale. If the
Archive is able to build a presentation of the specified type,
it collects together each user interface element that makes up

35 the presentation and returns this to the user interface object.

For each presentation the archive is able to make, it has
a list of user interface element IDs that together make up the
presentation. The user interface elements are stored on disk

40 maintained by a disk dictionary object called. Given a key,
the disk dictionary will return the corresponding user inter­
face element. The user interface element ID makes up the
primary component of this key. A secondary component of
the key is the desired locale. A locale is an object that

45 specifies the natural language and other cultural attributes of
the user. The locale obtained automatically by the Archive
from a Preferences Server. This server contains all of the
individual preferences associated with the user.

The locale, as obtained from the preferences server, is
50 combined with the ID into a single object called a TUse­

rInterfaceElementKey. This key passed as a parameter to the
GetValue method of the disk dictionary. If a user interface
element with a matching ID and locale is found, it is returned
and included as part of the presentation. Otherwise, the

55 locale parameter must be omitted from the key, or another
locale must be specified until an appropriate user interface
element is found.

Localized Presentations

the Interactor when the time is up which indicates the current
state of the mouse. Then, if the system detects that the mouse
is still down at decision block 1750, control is passed to
function block 1740. Otherwise, control is passed to termi­
nal 1760. If the mouse button is still down, the interactor 5

makes sure it is still in the correct state and asks the
Interactable to implement the correct operation. The Inter­
actor is Selecting if fInteractionType is kSelecting. It is
Moving if the fInteractionType is kMoving.

If selecting, the Interactor compares the current mouse 10

location with the initial mouse location. The current mouse
location is obtained by calling the GetCurrentLocation
method. The initial mouse location is obtained by calling the
GetInitialLocation method. If the two are the same or differ
by only a small amount, the user is still selecting the object. 15

The Interactor then asks the Interactable to continue the
selection operation by calling its SelectRepeat method.
However, if the two points differ beyond a predetermined
threshold, the user has begun moving the object. In this case,
the Interactor asks the Interactable to terminate the selection 20

operation by calling its SelectEnd method. It then asks the
Interactable to begin the move operation by callings its
MoveBegin method. In each case, the current mouse loca­
tion is passed as an argument. If Moving, the Interactor asks
the Interactable to continue the move operation by calling its 25

MoveRepeat method. It passes the current mouse location as
an argument.

When the user releases the mouse button, it signals the
end of the current operation. If Selecting, the Interactor asks
the Interactable to terminate the selection operation by 30

calling its SelectEnd method. If moving, the Interactors asks
the Interactable to terminate the move operation by calling
its MoveEnd method.

Localization is the process of updating an application to
conform to unique requirements of a specific locale. It may
involve language translation, graphic substitution, and inter­
face element reorientation. For example, the text used in
labels, titles, and messages depends upon the selected lan­
guage. Its direction and orientation may affect the placement
and orientation of a menu, menubar, title, scrollbar, or
toolbar. Similarly, the selection of icons and other graphical
symbols may be culturally dependent. Unfortunately, having
many localized versions of user interface elements in
memory is very expensive. Instead, localized versions of
user interface elements are kept on disk until required in
memory.

Further, it is very error-prone and expensive to keep track
of all of the user interface elements and decide which
version to use. Instead, when a user interface element is
required, the appropriate one is selected automatically by the
system, according to the current language and other cultural
parameters, and read into memory.

Once localized, user interface elements are stored in a
disk dictionary. A disk dictionary is an object that, when
given a key, returns a value after reading it in from disk. This
disk dictionary is managed by an object called an archive.
An archive is responsible for putting together the individual 60

user interface elements that make up a particular presenta­
tion. The process of selecting the proper user interface
element is presented in FIG. 19.

Processing commences at terminal 1900 and immediately
passes to function block 1910 when a user requests a 65

presentation. A TOpenPresentation Command is sent to the
data model, indicating that the user wants to view or edit this

US 6,424,354 Bl
33 34

15

the system first determines whether the user has moved the
mouse beyond a certain threshold, called the move thresh­
old. This is done by comparing the initial mouse location,
returned by the GetInitialLocation method, with the current

5 mouse location, returned by the GetCurrentLocation
method.

If the mouse has moved beyond the move threshold, the
system ends peek mode and enters move mode. It does this
by setting variable flnteractionType to constant kMove. It

10 asks the object to end the peek operation by calling its
PeekEnd method. It asks the object to begin the move
operation by calling its MoveBegin method. Otherwise, if
the mouse has not moved, the system continues the peek
operation by calling the object's PeekRepeat method.

If the system detects that a user releases the mouse button,
then if the system is in select mode, the system ends select
mode. It does this by setting variable flnteractionType to
constant kNone. The system queries the object to end the
select operation by calling its SelectEnd method. If the

20 system is in move mode, the system ends move mode. It
does this by setting variable flnteractionType to constant
kNone. Then, the system queries the object to end the move
operation by calling its MoveEnd method and ends drag
mode by setting variable flnteractionType to constant

25 kNone. It asks the object to end the drag operation by calling
its DragEnd method. If the system is in peek mode, the
system ends peek mode. It does this by setting variable
flnteractionType to constant kNone. It asks the object to end
the peek operation by calling its PeekEnd method.

Accordingly, it is a primary objective of the present
invention to provide an innovative hardware and software
system which enables the contents of a window to update
dynamically as a user moves a scrollbar thumb. The system
detects when a user presses down on a scrollbar thumb.

35 When the user presses down on the scrollbar thumb, the
system begins initiation of a scroll command to change the
portion of the data that is exposed in the window. A
command is an object that implements an end-user action,
such as scrolling. A scroll command has one parameter, the

40 position to which the content view should be scrolled. The
system sets this position to the current scroll position. This
is accomplished by calling the command's SetScrollPosition
and setting the scroll to position to the value returned by the
scrollbar's method GetScrollPosition.

When a user moves the mouse within the scrollbar, the
system continues the execution of the scroll command to
dynamically change the portion of the data exposed in the
window. The system sets the scroll position of the command
to the new scroll position. This is accomplished by calling

50 the command's SetScrollPosition and setting the value equal
to the value returned by the scrollbar's method GetScroll­
Position. The execution of the command is then repeated by
calling its DoRepeat method. This causes the content view
to scroll to the new position. This processing is continued

55 while a user continues to hold the mouse button down.
When a user releases the mouse button, the system ends

the execution of the scroll command to dynamically change
the portion of the data exposed in the window. The system
sets the scroll position of the command to the final scroll

60 position. This processing is accomplished by calling the
command's SetScrollPosition and setting it equal to the
value returned by the scrollbar's method GetScrollPosition.

FIG. 20 is a flowchart illustrating the detailed logic
associated with scrolling in accordance with the subject

65 invention. Processing commences at terminal block 2000
and immediately passes to function block 2010 where the
current scroll position is initialized based on the current

operations. This invention discloses the method and appa­
ratus for translating input syntax into semantic operations
for an object that supports Select, Peek, Move, AutoScroll,
and Drag/Drop (Copy).

The invention detects a mouse button depression and then
employs the following logic:
(a) If an Option key was depressed when the user pressed the

mouse button, the system enters drag mode by setting
variable flnteractionType to constant kDrag. The system
then commences a drag operation using the selected
object as the target of the operation; 0 r

(b) if the Option key was not depressed, then the system
enters selection mode by setting variable flnteractionType
to constant kSelect. Then, the select operation is com­
menced.
If a user already had the mouse button depresses and

continues to hold the mouse button down, then the following
logic is engaged. If the system is in select mode, then the
system first determines whether the user has moved the
mouse beyond a certain threshold, called the move thresh­
old. This is done by comparing the initial mouse location,
returned by the GetInitialLocation method, with the current
mouse location, returned by the GetCurrentLocation
method. If the mouse has moved beyond the move threshold,
the system ends select mode and enters move mode. It does
this by setting variable flnteractionType to constant kMove.
The system then queries the object to terminate the select
operation by calling its SelectEnd method. The system then
initiates a move operation by calling its MoveBegin method.

Otherwise, if the mouse has not moved, the system checks 30

how long the mouse has been down. It does this by com­
paring the initial mouse down time, returned by the GetIni­
tialTime method, with the current time, returned by the
GetCurrentTime method. If the mouse has been down
beyond a certain threshold, called the peek threshold, the
system ends select mode and enters peek mode. It does this
by setting variable flnteractionType to constant kPeek. It
asks the object to end the select operation by callings its
SelectEnd method, and begins a peek operation by calling its
PeekBegin method. Otherwise, if the mouse has not moved,
or it has not been down beyond the peek threshold, the
system continues the select operation by calling the object's
SelectRepeat method. If the system detects that a user is in
Move mode, the system first determines whether the user has
moved the mouse within the window, on the border of the 45

window, or outside the window. It does this by comparing
the current mouse location, returned by the
GetCurrentLocationMethod, with the bounds of the object's
container, returned by GetContainerBounds.

If the mouse is still within the bounds of the window, the
system continues the move operation by calling the object's
MoveRepeat method. If the mouse is on the border of the
window, this indicates an AutoScroll operation. The system
asks the object's container to scroll in the direction indicated
by the mouse location. This is done by calling the contain­
er's AutoScroll method and passing the current mouse
location as a parameter. Once complete, the system contin­
ues the move operation by calling the object's MoveRepeat
method.

If the mouse has moved outside the window, the system
ends move mode and enters drag mode. It does this by
setting variable flnteractionType to constant kDrag. It asks
the object to end the move operation by calling its MoveEnd
method. It asks the object to begin the drag operation by
calling its DragBegin method. If the system is in drag mode,
the system continues the drag operation by calling the
object's DragRepeat method. If the system is in peek mode,

35
US 6,424,354 Bl

36

45

35

50

connection object method corresponding to another of
the notification type plurality.

5. The operating method of claim 3 further comprising the
step of:

(c. 1.1) invoking a connection object method responsible
for using the connection information in the connection
object to modify a name associated with the first object.

6. The operating method of claim 3 further comprising the
step of:

(c. 1.1) invoking a connection object method responsible
for using the connection information in the connection
object to modify a graphic associated with the first
object.

7. The operating method of claim 3 further comprising the
15 step of:

(c. 1.1) invoking a connection object method responsible
for using the connection information in the connection
object to create or modify data associated with the first
object.

8. The operating method of claim 3 further comprising the
step of:

(C. 1.1) invoking a connection object method responsible
for using the connection information in the connection
object to read data associated with the first object.

9. The operating method of claim 8 further comprising the
step of:

(c. 1.2) invoking a connection object method responsible
for using the connection information in the connection
object to execute an undo function associated with the
first object.

10. The operating method of claim 8 further comprising
the step of:

(c. 1.2) invoking a connection object method responsible
for using the connection information in the connection
object to execute an redo function associated with the
first object.

11. A method for operating a computer-implemented
event notification system for propagating, among a plurality

40 of objects, events representing changes in the objects, the
operating method comprising the steps of:

(a) creating, on behalf of an event listener object, con­
nection information representing the event listener
object's interest in, and an associated object method
for, receiving notification of a change to an event
source object;

(b) registering the connection information with a connec­
tion object;

(c) creating an event representing a change in the event
source object, responsive to the change in the event
source object; and

(d) notifying the event listener object of the event by
invoking the associated object method for receiving
notification registered with the connection object only
if the event information corresponds to an interest
registered on behalf of the event listener object.

12. The operating method of claim 11, wherein the
connection object is associated with status information, the

60 operating method further comprising the step of:
(b. 1) using the connection information in the connection

object to configure the status information to enable or
disable the notifying step (d).

13. The operating method of claim 11 wherein the con­
65 nection information is associate with a notification type

corresponding to a connection object method, the operating
method further comprising the step of:

cursor location. Then, at decision block 2020, a test is
performed to detect if the scrollbar thumb has been selected.
An example of a scrollbar thumb is shown in FIG. 21A at
label 2110. If the scrollbar thumb has been selected, then
control passes to decision block 2030 to determine if the 5

scrollbar thumb has been moved. If so, then the scroll
position is set to the new position of the scrollbar thumb and
the display is reformatted to reflect the immediate scroll
operation and displayed for the user. If the scrollbar thumb
has not moved, another test is performed at decision block
2050 to determine if the scrollbar thumb has been released. 10

If not, then control is returned to decision block 2030. If the
scrollbar thumb has been released, then control passes to
function block 2060 to end the scroll operation and return
the system to a nonscroll operational status and processing
is completed at terminal 2070.

FIGS. 21A, 21B and 21C illustrate window scrolling in
accordance with the subject invention. In FIG. 21A, the
scrollbar thumb 2110 is located at the top of the window
2112. FIG. 21B shows the scrollbar thumb 2120 moved to
the middle of the window and the window's contents 2122 20

updated accordingly. FIG. 21C shows the scrollbar thumb
2140 moved to the bottom of the window and the bottom
most portion of the window 2142 displayed.

While the invention has been described in terms of a
preferred embodiment in a specific system environment, 25

those skilled in the art recognize that the invention can be
practiced, with modification, in other and different hardware
and software environments within the spirit and scope of the
appended claims.

Having thus described our invention, what we claim as 30

new, and desire to secure by Letters Patent is:
1. A method for operating a computer-implemented event

notification system for propagating, among a plurality of
objects, events representing changes in the objects, the
operating method comprising the steps of:

(a) creating, on behalf of a first object, connection infor­
mation representing the first object's interest in, and an
associated object method for, receiving notification of
a change to a second object;

(b) registering the connection information with a connec­
tion object;

(c) creating an event representing a change in the second
object, responsive to the change in the second object;
and

(d) notifying the first object of the event by invoking the
associated object method for receiving notification reg­
istered with the connection object only if the event
information corresponds to an interest registered on
behalf of the first object.

2. The operating method of claim 1, wherein the connec­
tion object is associated with status information, the oper­
ating method further comprising the step of:

(b. 1) using the connection information in the connection
object to configure the status information to represent 55

whether the notifying step (d) is activated or inacti­
vated.

3. The operating method of claim 1, wherein the connec­
tion information is associated with a notification type cor­
responding to a connection object method, the operating
method further comprising the step of:

(c. 1) invoking the connection object method correspond­
ing to the notification type specified by the connection
information in the connection object.

4. The operating method of claim 3 wherein:
each of a notification type plurality corresponds to a

unique connection object method different from the

37
US 6,424,354 Bl

38
23. The operating method of claim 22, wherein the

channel object is associated with status information, the
operating method further comprising the step of:

(b. 1) using the connection information in the channel
object to configure the status information to make the
notifying step (d) active or passive.

24. The operating method of claim 22, wherein the
connection information is associated with a notification type
corresponding to a channel object method, the operating
method further comprising the step of:

(c.1) invoking the channel object method corresponding
to the notification type specified by the connection
information in the channel object.

25. The operating method of claim 24, wherein a notifi­
15 cation type plurality all correspond to the same single

channel object method, the operating method further com­
prising the step of:

transferring notification type information-between two
objects.

26. The operating method of claim 24 further comprising
the step of:

(c. 1.1) invoking a channel object method responsible for
using the connection information in the channel object
to create or modify data associated with the consumer
object.

27. The operating method of claim 24 further comprising
the step of:

(c. 1.1) invoking a channel object method responsible for
using the connection information in the channel object
to read data associated with the consumer object.

28. The operating method of claim 24 wherein the event
has an associated type attribute.

29. The operating method of claim 22 wherein the creat­
ing step (c) is initiated by the channel object.

30. The operating method of claim 22 wherein the creat­
ing step (c) is initiated by the supplier object.

31. A method for operating a computer-implemented
event notification system for propagating, among a plurality
of objects, events representing changes in the objects, the
operating method comprising the steps of:

(a) creating, on behalf of a receiver object, connection
information representing the receiver object's interest
in, and an associated object method for, receiving
notification of a change to a source object;

(b) registering the connection information using a con­
nection object;

(c) creating an event representing a change in the source
object, responsive to the change in the source object;
and

(d) notifying the receiver object of the event by invoking
the associated object method for receiving notification
registered using the connection object only if the event
information corresponds to an interest registered on
behalf of the receiver object.

32. The operating method of claim 31, wherein the
connection object is associated with status information, the
operating method further comprising the step of:

(b. 1) using the connection information in the connection
object to configure the status information to represent
whether the notifying step (d) is activated or inacti­
vated.

33. The operating method of claim 31, wherein the
connection information is associated with a notification type
corresponding to a connection object method, the operating
method further comprising the step of:

(c. 1) invoking the connection object method correspond­
ing to the notification type specified by the connection
information in the connection object.

14. The operating method of claim 13, wherein each of a
notification type plurality corresponds to the same single 5

connection object method, the operating method further
comprising the step of:

(c. 1.1) transferring notification type information between
two objects.

15. The operating method of claim 13 further comprising 10

the step of:
(c. 1.1) invoking a connection object method responsible

for using the connection information in the connection
object to modify a name associated with the event
listener object.

16. The operating method of claim 13 further comprising
the step of:

(c. 1.1) invoking a connection object method responsible
for using the connection information in the connection
object to modify a graphic icon associated with the 20

event listener object.
17. The operating method of claim 13 further comprising

the step of:
(c. 1.1) invoking a connection object method responsible

for using the connection information in the connection 25

object to read data associated with the event listener
object.

18. The operating method of claim 13 further comprising
the step of:

(c. 1.1) invoking a connection object method responsible 30

for using the connection information in the connection
object to create or modify data associated with the
event listener object.

19. The operating method of claim 18 wherein the data
associated with the event listener object includes descriptive 35

textual data.
20. The operating method of claim 18 further comprising

the step of:
(c. 1.2) invoking a connection object method responsible

40
for using the connection information in the connection
object to execute an undo function associated with the
event listener object.

21. The operating method of claim 18 further comprising
the step of: 45

(c. 1.2) invoking a connection object method responsible
for using the connection information in the connection
object to execute an redo function associated with the
event listener object.

22. A method for operating a computer-implemented 50

event notification system for propagating, among a plurality
of objects, events representing changes in the objects, the
operating method comprising the steps of:

(a) creating, on behalf of a consumer object, connection
information representing the consumer object's interest 55

in, and an associated object method for, receiving
notification of a change to a supplier object;

(b) registering the connection information with a channel
object;

(c) creating an event representing a change in the supplier 60

object, responsive to the change in the supplier object;
and

(d) notifying the consumer object of the event by invoking
the associated object method for receiving notification
registered with the channel object only if the event 65

information corresponds to an interest registered on
behalf of the consumer object.

US 6,424,354 Bl
39 40

40

65

55

10

of objects, events representing changes in the objects, the
operating method comprising the steps of:

(a) creating, on behalf of a receiver object, connection
information representing the receiver object's interest
in, and an associated object method for, receiving
notification of a change to a source object;

(b) registering the connection information using a con­
nection object;

(c) creating an event representing a change in the source
object, responsive to the change in the source object;

(d) notifying the receiver object of the event by invoking
the associated object method for receiving notification
registered using the connection object only if the event
information corresponds to an interest registered on
behalf of the receiver object; and

(e) using the connection information in the connection
object to configure status information to disable the
notifying step (d).

43. A method for operating a computer-implemented
event notification system for propagating, among a plurality
of objects, events representing changes in the objects, the
operating method comprising the steps of:

(a) creating, on behalf of a receiver object, connection
information representing the receiver object's interest
in, and an associated object method for, receiving
notification of a change to a source object;

(b) registering the connection information using a con­
nection object;

(c) creating an event representing a change in the source
object, responsive to the change in the source object;

(d) notifying the receiver object of the event by invoking
the associated object method for receiving notification
registered using the connection object only if the event
information corresponds to an interest registered on
behalf of the receiver object;

said connection information being associated with a noti­
fication type corresponding to a connection object
method;

(e) invoking the connection object method corresponding
to the notification type specified by the connection
information in the connection object;

each of a notification type plurality corresponding to the
same single connection object method; and

(f) transferring notification type information between two
objects.

44. The operating method of claim 43 further comprising
the step of:

(c. 1.1) invoking a connection object method responsible
for using the connection information in the connection
object to modify a name associated with the receiver
object.

45. The operating method of claim 43 further comprising
the step of:

(c. 1.1) invoking a connection object method responsible
for using the connection information in the connection
object to modify a graphic icon associated with the
receiver object.

46. The operating method of claim 43 further comprising
the step of:

(c. 1.1) invoking a connection object method responsible
for using the connection information in the connection
object to read data associated with the receiver object.

47. The operating method of claim 43 further comprising
the step of:

(c. 1) invoking the connection object method correspond­
ing to the notification type specified by the connection
information in the connection object.

34. The operating method of claim 33 wherein:
each of a notification type plurality corresponds to a 5

unique connection object method different from the
connection object method corresponding to another of
the notification type plurality.

35. The operating method of claim 33 further comprising
the step of:

(c. 1.1) invoking a connection object method responsible
for using the connection information in the connection
object to modify a name associated with the receiver
object.

36. The operating method of claim 33 further comprising 15

the step of:

(c. 1.1) invoking a connection object method responsible
for using the connection information in the connection
object to modify a graphic associated with the receiver 20

object.
37. The operating method of claim 33 further comprising

the step of:

(c. 1.1) invoking a connection object method responsible
for using the connection information in the connection 25

object to create or modify data associated with the
receiver object.

38. The operating method of claim 33 further comprising
the step of:

(c. 1.1) invoking a connection object method responsible 30

for using the connection information in the connection
object to read data associated with the receiver object.

39. The operating method of claim 38 further comprising
the step of:

(c. 1.2) invoking a connection object method responsible 35

for using the connection information in the connection
object to execute an undo function associated with the
receiver object.

40. The operating method of claim 38 further comprising
the step of:

(c. 1.2) invoking a connection object method responsible
for using the connection information in the connection
object to execute a redo function associated with the
receiver object.

41. A method for operating a computer-implemented 45

event notification system for propagating, among a plurality
of objects, events representing changes in the objects, the
operating method comprising the steps of:

(a) creating, on behalf of a receiver object, connection
information representing the receiver object's interest 50

in, and an associated object method for, receiving
notification of a change to a source object:

(b) registering the connection information using a con­
nection object;

(c) creating an event representing a change in the source
object, responsive to the change in the source object;

(d) notifying the receiver object of the event by invoking
the associated object method for receiving notification
registered using the connection object only if the event 60

information corresponds to an interest registered on
behalf of the receiver object; and

(e) using the connection information in the connection
object to configure status information to enable the
notifying step (d).

42. A method for operating a computer-implemented
event notification system for propagating, among a plurality

US 6,424,354 Bl
41 42

30

52. The operating method of claim 51, wherein the notifier
object is associated with status information, the operating
method further comprising the step of:

(b. 1) using the connection information in the notifier
object to configure the status information to make the
notifying step (d) active or passive.

53. The operating method of claim 51, wherein the
connection information is associated with a notification type
corresponding to a notifier object method, the operating
method further comprising the step of:

(c. 1) invoking the notifier object method corresponding
to the notification type specified by the connection
information in the notifier object.

54. The operating method of claim 53, wherein a notifi­
15 cation type plurality all correspond to the same single

notifier object method, the operating method further com­
prising the step of:

transferring notification type information between two
objects.

55. The operating method of claim 53 further comprising
the step of:

(c. 1.1) invoking a notifier object method responsible for
using the connection information in the notifier object
to create or modify data associated with the receiver
object.

56. The operating method of claim 53 further comprising
the step of:

(c. 1.1) invoking a notifier object method responsible for
using the connection information in the notifier object
to read data associated with the receiver object.

57. The operating method of claim 53 wherein the event
has an associated type attribute.

58. The operating method of claim 51 wherein the creat­
ing step (c) is initiated by the notifier object.

59. The operating method of claim 51 wherein the creat­
ing step (c) is initiated by the source object.

(c. 1.1) invoking a connection object method responsible
for using the connection information in the connection
object to create or modify data associated with the
receiver object.

48. The operating method of claim 47 wherein the data 5

associated with the receiver object includes descriptive
textual data.

49. The operating method of claim 47 further comprising
the step of:

(c. 1.2) invoking a connection object method responsible 10

for using the connection information in the connection
object to execute an undo function associated with the
receiver object.

50. The operating method of claim 47 further comprising
the step of:

(c. 1.2) invoking a connection object method responsible
for using the connection information in the connection
object to execute a redo function associated with the
receiver object.

51. A method for operating a computer-implemented 20

event notification system for propagating, among a plurality
of objects, events representing changes in the objects, the
operating method comprising the steps of:

(a) creating, on behalf of a receiver object, connection 25

information representing the receiver object's interest
in, and an associated object method for, receiving
notification of a change to a source object;

(b) registering the connection information with a notifier
object;

(c) creating an event representing a change in the source
object, responsive to the change in the source object;
and

(d) notifying the receiver object of the event by invoking
the associated object method for receiving notification 35

registered with the notifier object only if the event
information corresponds to an interest registered on
behalf of the receiver object.

