Apple, Inc. v. Motorola, Inc. et al Doc. 239 Att. 10

Exhibit 13

Dockets.Justia.com


http://dockets.justia.com/docket/wisconsin/wiwdc/3:2010cv00662/29072/
http://docs.justia.com/cases/federal/district-courts/wisconsin/wiwdc/3:2010cv00662/29072/239/10.html
http://dockets.justia.com/

O 00

United States Pzitent [19]

Serlet et al.

(11j Patent Number:

5,481,721

1451 Date of Patent: Jan. 2, 1996

[54]

[75]

[73]

(21]
[22]

(63]

(51]
(52]

{58]

[56]

METHOD FOR PROVIDING AUTOMATIC
AND DYNAMIC TRANSLATION OF OBJECT
ORIENTED PROGRAMMING
LANGUAGE-BASED MESSAGE PASSING
INTO OPERATION SYSTEM MESSAGE
PASSING USING PROXY OBJECTS

Inventors: Bertrand Serlet; Lee Boynton, both of
Palo Alto; Avadis Tevanian, Mountain
View, all of Calil.

Assignee: NeXT Computer, Inc., Redwood City,
Calif.

Appl. No.: 332,486
Filed: Oct. 31, 1994
Related U.S. Application Data

Continuation of Ser. No. 731,636, Jul. 17, 1991, abandoned.

Int. CL® GO6F 9/44
US. Cl e 3957700; 364/DIG. 1;

364/280; 364/284.3; 364/284
Field of Search .........cocoooovviiii 395/700, 650;

364/DIG. 1, DIG. 2

References Cited
U.S. PATENT DOCUMENTS

5,060,150 10/1991 Simor 364/200
5,230,051 7/1993 Quan 395/700
5,305,461  4/1994 Feigenbaum et al. .cooceeuenenn. 3951775

LOCAL 901

904
RECEIVER
PROXY
ARGUMENT = %

905

MESSAGE

914
RESULT j

| - 906

OTHER PUBLICATIONS

Bennet, J. K., “The design and implementation of Distrib-
uted Smalltalk”, SIGPLAN Notices, vol. 22, No. 12, pp.
318-320, OOPSLA 87 Proceedings, Dec. 1987.
McCullough, P. L., “Transparent Forwarding: First Steps”,
SIGPLAN Notices, vol. 22, No. 12, pp. 331-341, OOPSLA
’87 Proceedings, Dec. 1987.

Shapiro, M., “The Design of a Distributed Object—Oriented
Operating System For Office Applications”, ESPRIT ’88.
Putting the Technology to Use Proceedings of the 5th
Annual ESPRIT Conference, pp. 1020-1027, vol. 2, Nov.
1988.

Primary Examiner—Kevin A. Kriess
Attorney, Agent, or Firm—Hecker & Harriman

{571 ABSTRACT

The present invention provides a method and apparatus for
the distribution of objects and the sending of messages
between objects that are located in different processecs.
Initially, a “proxy” object is created in the same process as
a sender object. This proxy acts as a local receiver for all
objects in the local program. When the proxy receives a
message, the message is encoded and transmitted between
programs as a siream of bytes. In the remote process, the
message is decoded and executed as if thc scnder was
remote. The result follows the same path, encoded, trans-
mitted, and then decoded back in the local process. The
result is then provided to the sending object.

24 Claims, 6 Drawing Sheets

REMOTE 902

909

MESSAGE.

908
907

e %

910

SENDER

ARGUMENT = FOXY

~t:'I

WI-Apple0004671



U.S. Patent Jan. 2, 1996 Sheet 1 of 6 5,481,721
101

CLASS 1 102
METHODS 4, 8, C |
INSTANCE
103 104 METHODS 4, 8, C
/ /
SUBCLASS 1.1 INSTANCE

METHODS A B, C, E METHODS A B, C, £

FIG. 7 priog 1

201 DELEGATE
OBJECT A —ZMESSAGE-——— OBJECT B MfoAGE
DELEGATE
FIG. 2 OBJECT C
417 418
/
F /G 4 VIDED AMP CRT
VIDEO MUX | _— 416
413 AND SHIFTERS ‘i5
S Vi /
CPU VIDEO MEMORY MAIN MEMORY

A
Vi \/ >

419
KEYBOARD MOUSE MASS STORAGE

410 4711 >72

WI-Apple0004672



U.S. Patent Jan. 2, 1996 Sheet 2 of 6 5,481,721

toca L9071 006 L REMOTE |- 902
/
904
MESSAGE RECEIVER MESSAGE.
RNy RECEIVER
903 907 908
ENCODE 909
ARGUMENT = @
905
LOCAL | 901 906 REMOTE L~ 902
/‘
904 909
MESSAGE RECEIVER MESSAGE
7 PROXY RECEIVER
903 907 908
ENCODE 910
- _/ SENDER
ARGUMENT ARGUMENT s

905

WI-Apple0004673



U.S. Patent Jan. 2, 1996 Sheet 3 of 6 5,481,721
FIG. 3C
|- 901 902
LOCAL 906 REMOTE

904

MESSAGE

4
903

RECEIVER
PROXY

909
M?SAGE RECEIVER
908
907

ENCODE

ARGUMENT =

905

914

RESULT
PROXY

910
_/ SENDER
ARGUMENT el

911
| LXECUTE

~_

913

/
< ENCODE
912

WI-Apple0004674



U.S. Patent Jan. 2, 1996 Sheet 4 of 6 5,481,721

FIG. 5

C_OBJECT A D

A SELECTOR MESSAGE | 901

T0 ORJECT B
505
DECODE RESULT — p— 911
IMPLEMENTATION YES
EXIST IN OBJECT B EXECUTE METHOD
?
ENCODE RESULT | ~510 502
AND TRANSMIT NO

INVOKE FoRwaRD- |~ 904

EXECUTE METHOD |~ 509
AND GENERATE RESULT

LOCATE OBJECT T0 505
RESPOND T0 A -
SELECTOR MESSAGE

DECODE AND PROVIDE |~ 508
TO DESTINATION O0BJECT,

ENCODE MESSAGE
AND TRANSMIT

\

507

OBJECT FOUND
?

INVOKE EXCEPTION

N

513

WI-Apple0004675



U.S. Patent Jan. 2, 1996 Sheet 5 of 6 5,481,721
FIG. 6 erior s

502 LOCAL MACHINE
\
- PROXY 0BJECT
601~ l
- 603
MESSAGE DESTINED FOR FORWARDED
REMOTE OBJECT MESSAGE
| 606
- - /
—
604 T
J RESULT
O0BJECT
REMOTE OBJECT ~ 605
REMOTE MACHINE
FIG. 7 prior s
LOCAL MACHINE
704
%2 703 \
. PROXY OBJECT POLICYWAKER = 705
I~ l 706
/
MESSAGE DESTINED FOR TRANSPORTER
REMOTE OBJECT 7/ ROOM
15
| 708 707 606
7 {— /
77\0 T
RECONSTRUCTED MESSAGE
REMOTE OBJECT TRANSPORTER
7 ROOM
- 714 /
711 709 ~ 713
REMOTE MACHINE

WI-Apple0004676



U.S. Patent Jan. 2, 1996

FIG.

Loca 801

804
MESSAGE /

RESULT N\
805
802

Sheet 6 of 6 5,481,721

SA

803

FIG. 8B reriorsmr

Locar | 801

806

REMOTE |~ 807

MESSAGE

/ ?

- 809

804

802

808

WI-Apple0004677



5,481,721

1

METHOD FOR PROVIDING AUTOMATIC
AND DYNAMIC TRANSLATION OF OBJECT
ORIENTED PROGRAMMING
LANGUAGE-BASED MESSAGE PASSING
INTO OPERATION SYSTEM MESSAGE
PASSING USING PROXY OBJECTS

BACKGROUND OF THE PRESENT
INVENTION

This is a continuation of application Ser. No. 07/731,636
filed Jul. 17, 1991, now abandoned.

FIELD OF THE INVENTION

This invention relates to the field of object-oriented
programming and distributed computing.

BACKGROUND ART

Object-oriented programming is a method of creating
computer programs by combining certain fundamental
building blocks, and creating relationships among and
between the building blocks. The building blocks object-
oriented programming systems are called “objects.” An
object is a programming unit that groups together a data
structure (instance variables) and the operations (methods)
that can use or affect that data. Thus, an object consists of
data and one or more operations or procedures that can be
performed on that data. The joining of data and operations
into a unitary building block is “encapsulation.” In object-
oriented programming, operations that can be performed on
the data are referred to as “methods.”

An object can be instructed to perform one of its methods
when it receives a “message.” A message is a command or
instruction to the object to execute a certain method. It
consists of a method selection (name) and arguments that are
sent to an object. A message tells the receiving object what
to do.

One advantage of object-oriented programming is the way
in which methods are invoked. When a message is sent to an
object, it is not necessary for the message to instruct the
object how to perform a certain method. It is only necessary
to request that the object execute the method. This greatly
simplifies program development.

Object-oriented programming languages are generally
based on one of two schemes for representing general
concepts and sharing knowledge. One scheme is known as
the “class” scheme. The other scheme is known as the
“prototype” scheme. Both the set-based and prototype-based
object-oriented programming schemes are generally
described in Lieberman, “Using Prototypical Objects to
Implement Shared Behavior in Object-Oriented Systems,”
OOPSLA 86 Proceedings, September 1986, pp. 214-223.

Class Scheme

An object that describes behavior is called a “class.”
Objects that acquire a behavior and that have states are
called “instances.” Thus, in the objective C language, which
is the computer language in which the preferred embodiment
of the present invention is implemented, a class is a par-
ticular. type of object. In objective C, any object that is not
aclass object is said to be an instance of its class. The classes
form a “hierarchy.” Each subclass in the hierarchy may add
to or modify the behavior of the object in question and may
also add additional states. Inheritance is a fundamental
property of the class scheme and allows objects to acquire

5

10

20

25

40

45

55

60

65

2

behavior from other objects.

The inheritance hierarchy is the hierarchy of classes
defined by the arrangement of superclasses and subclasses.
Except for the root classes, every class has a superclass, and
any class may have an unlimited number of subclasses. Each
class inherits from thosc classes above it in the hierarchy.
Thus, a superclass has the ability to pass its characteristics
(mcthods and instancc variables) onto its subclasses.

FIG. 1 is a block diagram that illustrates inheritance.
Class 1 (generally indicated by block 101) defines a class of
objeccts that have threc methods in common, namely, A, B
and C. An object belonging to a class is referred to as an
“instance” of that class. An example of an instance of class
1 is block 102. An instance such as instance 102 contains all
the methods of its parent class. Block 102 contains methods
A, B and C.

As discussed, each class may also have subclasses, which
also share all the methods of the class. Subclass 1.1 (indi-
cated by block 103) inherits methods A, B and C and defines
an additional method, E. Each subclass can have its own
instances, such as, for example, instance 104. Each instance
of a subclass includes all the methods of the subclass. For
example, instance 104 includes methods A, B, C and E of
subclass 1.1.

Not all object oriented programming languages permit
new methods to be added per instance. For, example, in
Objective C, an instance can not have methods that are not
contained in its parent class.

A disadvantage of an inheritance-based, object-oriented
programming language is object size. Because each subclass
must, by definition, include all methods of its parent class
and super classes, instances are larger at the bottom of the
inheritance hierarchy.

Object-oriented programming languages that utilize the
class/instance/inheritance structure described above imple-
ment a set-theoretic approach to sharing knowledge. This
approach is used in object-oriented programming languages,
such as Simula, SmallTalk, Flavors and Loops.

Prototype Scheme

The prototype scheme is an alternate approach to sharing
knowledge in an object-oriented system. In prototype
scheme systems that use the individual instances, rather than
a class, (“prototypes”) are created first, instead of a class.
The prototypes are then generalized by defining aspects of
their concepts that are permitted to vary. The mechanism for
implementing this process is known as “delegation.”
Examples of prototype languages include the actor language
and lisp-based object-oriented systems, such as director, t,
and orbit.

Delegation removes the distinction between classes and
instances. To create another object that shares knowledge
with a prototype, an “extension” object is created that has a
list containing its prototypes that may be shared with other
objects and containing personal behavior limited to the
object itself. When an extension object receives a message,
it attempts to respond to the message using the behavior
stored in its personal aspect. If the object’s personal char-
acteristics are not suitable to answer the message, the object
forwards the message on to other prototypes to see if one can
respond to the message. This method of forwarding is called
“delegating the message.”

An example of delegation is illustrated in FIG. 2. Object
A provides a message 201 to object B. The message includes
a method and arguments to the method. Object B does not

WI-Apple0004678



5,481,721

3

have the method required by the message. Therefore, object
B cannot respond to the message. Instead, object B sends the
method and message to its delegate. The delegate of object
B is object C. Object C has the method requested in the
message. The method can then be executed and a response
provided to object A.

Distributed Programming

A disadvantage of current object-oriented programming
systems is that all objects are required to exist in a single
program or process. This prohibits utilizing an object-
oriented programming system when writing distributed
applications. In addition, these prior art limitations prevent
the creation of applications that are distributed physically
over networks of machines.

The difficulty of creating distributed object-oriented pro-
grams is illustrated in FIGS. 8A and 8B. In FIG. 8A, all
objects are resident in the same program, namely program
LOCAL 801. A sender object 802 sends a message 804 to a
receiver 803. The message may include a method and an
argument. The receiver 803 executes the method of the
message 804 and retumns a result 805. The result 805 is
provided back to the sender 802. In the example of FIG. 8A,
the object-oriented program resides entirely on one side of
a boundary 806.

FIG. 8B illustrates a prior art object-oriented program-
ming system attempting to communicate across a boundary
between processes. A local process 801 includes a sender
object 802 that generates a message 804 destined for
receiver object 808. However, object 808 is on the opposite
side of boundary 806. That is a separate process identified as
REMOTE 807. An object, such as receiver 808 which
resides in a different process than a sender object, is known
a “remote object.” The language and run time support of the
local process 801 does not provide a mechanism to send a
message 804 directly to the remote object 808. At the
transition point 809 of boundary 806, the message is
stopped.

One prior art approach for writing distributed applications
consists of explicitly defining the boundaries between dif-
ferent programs by specifying protocols, generating client/
server stubs, and communicating between processes or pro-
grams by using function calls that automatically transport
arguments and rcturn values between the client layer and the
server layer. At such boundaries, the object-oriented devel-
oper can no longer treat items as objects as soon as the
boundary of the process is crossed. This defeats the purpose
and advantage of using object-oriented programming in the
first place.

Another prior art method for providing distributed object
oriented programming is described in “Dcsign of a Distrib-
uted Object Manager for the SmallTalk-80System,” D.
Decouchant, OOPSLA 86 Procecdings, September, 1986,
pp- 444-452. The Decouchant reference describes the design
of a distributed object manager that allows several Small-
Talk-80 systems to share objects over a local area network.
When a local object desires to communicate with a remote
object, the local object communicates with a “proxy” that
locally represents the remote object. A proxy is part of the
private data of the object manager. The proxy has two fields
that describe a remote object, namely, the resident site of the
remote object and a virtual pointer to the object in the
resident site. If the referenced object migrates, the contents
of the referencing object are not modified. The proxy is
updated accordingly by the object manager. In this imple-

10

15

20

25

35

40

45

50

55

60

65

4

mentation, a proxy is functionally equivalent to a Unix link,
except that a proxy is not visible to the programmer. It is a
private data structure which is handled by the object man-
ager like other Small-Talk objects.

In the Decouchant reference, three processes cooperate to
perform the object manager functions. These are the network
manager, the main memory manager and the secondary
manager. SmallTalk interpreter processes which access the
objects to perform SmallTalk actions may also be present on
the sile. The network manager is the master process of a
SmallTalk site. It ensures consistency of the sharcd objects
with the other network sites and controls the local processes.
The main memory manager is in charge of the object
management in main memory. It resolves object faults by
allocating free space for the missing object and sending an
object load request to the secondary storage manager. The
secondary memory manager takes care of the object man-
agement in secondary storage. This storage is represented by
two files, one of which contains the SmallTalk object table
and the other one contains the object space.

Another prior art method to provide distributed object-
oriented programming is described in “The Design and
Implementation of Distributed SmallTalk,” John K. Bennett,
OOPSLA, Oct. 4-8, 1987, pp. 318-330. SmallTalk itself is
a language environment that provides a single user with
access to a single object address space. Only rudimentary
support exists within SmallTalk for cooperation among
users, and no support exists within SmallTalk for object
sharing between users or between different machines or
between processes on the same or different machines. The
Bennett references describes “distributed SmallTalk” (DS)
as a method of providing improved communication and
interaction among geographically remote SmallTalk users,
direct access to remote objects, the ability to construct
distributed applications in a SmallTalk environment, and a
degree of object sharing among users.

The system described in the Benneit reference does not
allow remote classes. Instead, the system requires that
classes and instances be co-resident on all processes and
machines. This impacts object mobility adversely. Instances
can only move to hosts with compatible classes and insuring
class compatibility is difficult. In addition, the system of
Bennett does not operate in an object-oriented programming
system that utilizes class inheritance and reactiveness.
(Reactiveness describes the ability of a system to present
objects for inspection or modification).

The system of Bennett uses ProxyObjects and a Remo-
teObjectTable to implement distributed message passing. A
ProxyObject represents a remote object to all objects in a
local address space. There is one ProxyObject per host per
remote object referenced by that host. ProxyObjects cause a
remote object’s message interface to appear to local objects
as if the remote object were locally resident. ProxyObjects
redefine the doesNotUnderstand: message of object. This is
the primary message defined for ProxyObjects. In other
words, messages sent to ProxyObjects are intended to fail.
The system responds to this failure by sending the message
doesNotUnderstand: to the receiver with the message that
was not understood as an argument. The ProxyObject’s
response to the doesNotUnderstand: message is to forward
the original message to the RemoteObjectTable on the
appropriate machine or process. The location of the remote
object is part of the internal state of the ProxyObject.

The RemoteObjectTable is responsible for receiving and
replying to messages forwarded by ProxyObjects. There is
one RemoteObjectTable per host. It is the sole instance of

WI-Apple0004679



5,481,721

5

class RemoteObjectTable. The RemoteObjectTable can be
thought of as a set of extensions to the object tables (if
present) of all remote machines. The RemoteObjectTable
keeps track of all local objects that are remotely referenced.
When the RemoteObjectTable receives a message from
some ProxyObject, it schedules a process that will contain
the execution context of the actual message receiver by
sending the message perform to the receiver with the for-
warded selector and arguments (if any) as arguments to the
perform message. The value returned by the perform mes-
sage is returned to the remote sender in a reply message
constructed by the RemoteObjeciTable.

Belore an object can be sent between processes, the
classes must be checked for compatibility. The three cases to
consider are:

1. The required class is already present and is compatible;

2. The required class is present, but it is determined to be

Jincompatible; and

3. The required class is not present.

In case 1, the system proceeds normally. In the second
case, the attempted move fails and the user is notified of the
error. In case 3, the user is asked whether the desired objcct’s
class should be moved. If the response is affirmative, the
object’s super class is checked for compatibility. This pro-
cedure continues up the class hierarchy until class object is
reached. However, class object may not be moved.

Another method for providing distributed object-oriented
programming is described in “Transparcnt Forwarding: First
Steps™ Paul L. McCullough, OOPSLA 1987 Proceedings,
Oct. 4-8, 1987, pp. 331-341. As in the Bennett system, the
McCullough system utilizes ProxyObjects and the doesNo-
tUnderstand: message for identifying and transmitting mes-
sages. In the McCullough system, the implementation of
doesNotUnderstand: creates an ethernet packet containing
the original message and forwards it to the machine con-
taining the remote object. The proxy contains information in
its instance variables about where the remote object resides.

FIG. 6 illustrates an overview of the operation of the
McCullough system. A message 601 destined for a remote
object is provided to a ProxyObject 602. The ProxyObject
instance forms a representation of the message, including
both the selector and the arguments, suitable for transmis-
sion to a remote machine. This message 603 is forwarded
across the process boundary 606 to a remote object 604. The
remote object 604 receives the representation of the mes-
sage, extracts the message selector and arguments and
executes the message send as though it originated on the
same machinc as the remote object. This result object 605 is
transmitted across the process boundary 606 to the Proxy-
Object 602. The ProxyObject 602 uses the return represen-
tation to reconstruct the result object and returns it to the
sender of the original message 601.

The McCullough system implements four possible mes-
sage parameter passing schemes, namely, pass by value, pass
by reference, pass by proxy and pass by migration. In pass
by value, a representation of the object is shipped to the
remote machine, which in turn reconstructs the object. Pass
by reference cannot be used in a SmaliTalk environment
because the compiler prevents assignment to formal param-
eter variables. In pass by proxy, a proxy for the object and
any messages which are sent to the proxy are automatically
forwarded to the remote object. In pass by migration, we
move an object from one machine to another, leaving a
proxy object in its prior home.

A centralized control scheme, referred to as PolicyMaker,
is used to deliver messages to remote objects. Individual
proxies need not record the current network location of a

10

15

20

25

30

35

45

50

55

60

65

6

shared object, that is the responsibility of the PolicyMaker.
PolicyMaker responsibilities include the decision of whether
to pass objects by value, proxy or by migration, and whether
to forward a message to a remote object or whether to
migratc the object to the local machine for execution. In
addition, PolicyMaker keeps track of open connections
between machines. For each conmnection to a remote
machine, the PolicyMaker creates an instance of class Trans-
porterRoom. The TransporterRoom takes care of communi-
cations protocols between machines, as well as the linear-
ization of messages and objects.

FIG. 7 illustrates the flow control of sending a message
from a machine to a remote object using the scheme of the
McCullough system. A message 701, destined for a remote
object, is provided to a ProxyObject 702. The sender of the
message 701 believes it is sending to a local object, but in
reality it is sending to a remote object. The ProxyObject 702
sends a message 703 to the local PolicyMaker 704. The
PolicyMaker 704 determines whether the arguments of the
message should be sent by copying or by proxy to the remote
object. The PolicyMaker establishes a connection to the
remote machine via transporter room 706. The PolicyMaker
704 provides the message 705 to the TransporterRoom 706.
The TransporterRoom 706 linearizes and transmits the mes-
sage as message 707 to the remote machine across process
boundary 708.

The TransporterRoom 709 of the remote machine receives
the message 707. The TransporterRoom 709 sends the
reconstrucied message 710 to the remote object 711. The
remote object 711 returns a message 714 to the Transport-
erRoom 709. The PolicyMaker 712 considers the resulting
object and determines whether to return it by value or by
proxy and communicates to the TransporterRoom 709 on
path 713. The TransporterRoom 709 sends the message 707
to the TransporterRoom 706 across process boundary 708.
The TransporterRoom 706 reconstructs the result object and
provides it as message 715 to proxy object 702, which can
then return it to the sending context.

The use of migration limits the performance and ease of
use of these prior art schemes. Migration of objects from
their home process adds to the complexity of the system.
Another disadvantage of these prior art schemes is that each
process and thread must be forked to anticipate each
expected iteration. There is no provision for dynamic recur-
sive commmunicalion between processes. In addition, these
prior art schemes rely on a pure, large object oriented
language/environment, such as SmallTalk. This requires
substantial run time support to implement communication
between processes. In addition, the prior art schemes do not
implement suitable object collection methods.

SUMMARY OF THE INVENTION

The present invention permits the distribution of objects
and sending of messages between objects that are located in
different processes. Initially, a “proxy” object is created in
the same process as a sender object. This proxy acts as a
local receiver for all objects in the local program. When the
proxy receives a message, the message is encoded and
transmitted between programs as a stream of bytes. In the
remote process, the message is decoded and executed as if
the sender was remote. The result follows the same path,
encoded, transmitted, and then decoded back in the local
process. The result is then provided to the sending object.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram illustrating the concept of
inheritance in object-oriented programming.

WI-Apple0004680



5,481,721

7

FIG. 2 is a block diagram illustrating delegation in
object-oriented programming.

FIGS. 3A-3C illustrate the distributed processing object
oriented programming system of the present invention.

FIG. 4 is a block diagram illustrating a general purpose
computer system for implementing the present invention.

FIG. 5 is a flow diagram of the forwarding method of the
present invention.

FIG. 6 is a block diagram illustrating the prior art dis-
tributed processing object-oriented programming system.

FIG. 7 is a block diagram illustrating anothcr prior art
distributed processing object-oriented programming system.

FIGS. 8A and 8B illustrate non-distributed programming
systems.

DETAILED DESCRIPTION OF THE
INVENTION

A method and apparatus for distributed execution of
methods 1s described. In the following description, numer-
ous specific details, such as object-oriented programming
language, operating system, etc., are set forth in detail in
order to provide a more thorough understanding of the
present invention. It will be apparent, however, to onc
skilled in the arl, that the present invention may be practiced
without these specific details. In other instances, well known
features have not been described in detail so as not to
obscure the present invention.

The present invention may be implemented on any con-
ventional or general purpose computer system. An example
of one embodiment of a computer systcm for implementing
this invention is illustrated in FIG. 4. A keyboard 410 and
mouse 411 are coupled to a bi-directional system 419. The
keyboard and mouse are for introducing user input to the
computer system and communicating that user input to CPU
413. The computer system of FIG. 4 also includes a video
memory 414, main memory 415 and mass storagc 412, all
coupled to bi-directional system bus 419 along with key-
board 410, mouse 411 and CPU 413. The mass storage 412
may include both fixed and removable media, such as
magnetic, optical or magnetic optical storage systcms or any
other available mass storage technology. The mass storage
may be shared on a network, or it may be dedicated mass
storage. Bus 419 may contain, for example, 32 address lines
for addressing video memory 414 or main memory 415. The
system bus 419 also includes, for example, a 32-bit data bus
for transferring data between and among the components,
such as CPU 413, main memory 415, video memory 414 and
mass storage 412. Alternatively, multiplex data/address lines
may be used instead of separate data and address lines.

In the preferred embodiment of this invention, the CPU
413 is a 32-bit microprocessor manufactured by Motorola,
such as the 68030 or 68040. However, any other suitable
microprocessor or microcomputer may be utilized. The
Motorola microprocessor and its instruction set, bus struc-
ture and control lines are described in MC68030 User’s
Manual, and MC68040 User’s Manual, published by
Motorola Inc. of Phoenix, Ariz.

Main memory 415 is comprised of dynamic random
access memory (DRAM) and in the preferred embodiment
of this invention, comprises 8 megabytes of memory. More
or less memory may be used without departing from the
scope of this invention. Video memory 414 is a dual-ported
video random access memory, and this invention consists,
for example, of 256 kbytes of memory. However, more or
less video memory may be provided as well.

10

15

25

30

35

40

45

50

55

60

65

8

One port of the video memory 414 is coupled to video
multiplexer and shifter 416, which in turn is coupled to
video amplifier 417. The video amplifier 417 is used to drive
the cathode ray tube (CRT) raster monitor 418. Video
multiplexing shifter circuitry 416 and video amplifier 417
are well known in the art and may be implemented by any
suitable means. This circuitry converts pixel data stored in
video memory 414 to a raster signal suitable for use by
monitor 418. Monitor 418 is a type of monitor suitable for
displaying graphic images, and in the preferred embodiment
of this invention, has a resolution of approximately 1020x
832. Other resolution monitors may be utilized in this
invention.

The computer system described above is for purposes of
example only. The present invention may be implemented in
any type of computer system or programming or processing
environment.

The preferred embodiment of the present invention imple-
ments an object-oriented programming system using objec-
tive C language. Objective C is an extension to ANSI C that
supports the definition of classes of objects and provides
syntactic and run-time support for sending messages to
objects. This language model is partially derived from
SmallTalk and has been described in “Object-Oriented Pro-
gramming; An Evolutionary Approach,” Brad J. Cox, Addi-
son-Wesley 1986 and in “SmallTalk-80: The Language and
its Implementation,” Adele Goldberg, Dave Robson, Addi-
son-Wesley 1983.

One feature of objective C is “dynamic binding” of
messages to the actual methods to be invoked, depending on
the class of the receiver. A programmer writing code in
objective C can create code that sends a message “doSome-
thing” to an object. The actual method corresponding to the
class of the target object does not need to be determined until
the message must be sent. This allows objects of any classes
that implementing the doSomething method to be substi-
tuted for the target object at run time without having to
modify the part of the program that sends the message. Also,
in objective C, programs have run time access to method
“signatures,” that encode a method’s argument and return
types for each class. The method signature provides a way
for two programs to agree on the format of messages.
Moreover, there is a way to extract arguments from the stack
vsing the signature.

In its preferred embodiment, the present invention is
implemented in a computer system using an object-oriented
operating system. One such object-oriented operating sys-
tem is known as the “Mach” operating system and is
implemented on computers manufactured by NeXT, Inc., the
Assignee of the present invention.

The Mach operating system is an object-oriented operat-
ing system that supports distributed programming. It is a
multi-tasking operating system kernel, allowing multiple,
independent “tasks,” which provide the basic environment
of a program in the form of a demand-paged virtual “address
space” and one or more “threads” of execution. Mach
supports message-passing within and between tasks. This
support is distinct from objective C messaging described
earlier.

Fundamental to Mach’s ability to deliver messages
between different programs is an abstraction called a “port.”
A Mach port is a buffered communication channel over
which messages are sent. This channel, which is maintained
by the operating system, may be local, may span two tasks
on the same machine, or may span tasks on different
machines. The physical location of the receiving end of a

WI-Apple0004681



5,481,721

9

port has no effect on the sender, which always sees a local
reference to the port.

The messages sent on a port are buffered, that is, a sender
writes messages to a port with a “send” primitive, and a
receiver accepts messages with a “receive” primitive. The
messages themselves may be of any size, and consist of a
header followed by zero or more data objects. For efficiency,
large array arguments are passed out-of-line with copy-on-
write semantics. Of particular interest is the ability to pass
Mach ports themselves as data objects in a message. By this
means, one task may pass a port to another, with the kernel
maintaining address translation along the way. This allows
tasks to learn about the existence of new external objects, or
make new “acquaintances,” by receiving their ports in a
message. Thus, ports may also be viewed as a reference for
an object that is independent of any particular space, and
may be freely passed between programs.

For a task to communicate with a “receiver” object in
another address space, it must first establish a connection
with that program, and then create a local “proxy” for the
object. When a message is sent to this proxy, the elements
of the objective C message are encoded into a Mach mes-
sage, which is then forwarded through a Mach port 10 the
other program. On the receiving side, the message is
received, decoded, and then forwarded it to the target
objective C object. The return value of the objective C
method is then encoded and sent back to the originator,
where it is decoded and returned as the value. Each part of
this model is now described.

In order to communicate with an object in a different
program or process, that program or process must be known.
The present invention uses Mach ports to represent
“domains” of objects, and a token to identify objects within
that domain. This two-part address is easily communicated,
since the port maintains its identity as it moves beiween
domains. In Mach, acquiring ports is synonymous with
acquiring privileges 10 communicate. The present invention
requires that the local domain has send rights to a port that
the remote domain has receive rights to, and also that the
remote domain has send rights to a port that the local domain
has receive rights to, before any communication can take
place. Thus, mutual consent is required to communicate.

In addition to learning of each other’s ports, each domain
must also provide the other with the token corresponding 0
its “first proxy.” A first proxy is required to bootstrap the
communication. There must be at least one known object in
a remote domain before a message can be sent to it. Because
a connection allows messages in either direction and initi-
ated by either party, each side of a connection must have a
first proxy. This first proxy may be viewed as the “recep-
tionist” for the remotc domain, as other objects are obtained
(discovered) by asking this object. This object also is a
candidate for implementing sender authentication.

The present invention provides a means for implementing
an extensible, distributed program in which one task is
responsible for creating other tasks to communicate with.
This is a master/slave relationship; the master can provide
the slave with send rights to the master’s port as part of the
creation process. When the slave starts executing, it sends a
Mach message containing send rights to its port and a token
for its first proxy back to the master. The master then replies
with an indication of whether the connection is granted, and
what token to use for the first proxy. This “bootstrap-meta-
protocol” results in both tasks knowing about each other,
allowing communication to ensue.

Distributed Object Oriented Programming

The present invention provides a method for different
processes to communicate, using a traditional language-

20

25

30

35

40

45

50

55

60

65

10

based, message-passing paradigm. The present invention
has a number of advantages over prior art methods of
distributed object-oriented programming. These advantages
include no pre-defined set of messages, transparent to the
programmer, no code generation step and a method for
bridging the gap between object-oriented languages and
object-oriented operating systems.

The present invention differs from the prior art
approaches of Decouchant, Bennett and McCullough. The
present invention uses an object-oriented superset of ANSI
C with minimal run time support to implement transparent
messaging between application programs as opposed to the
prior art systems, that rely on a pure, large, dynamic
object-oriented language/environment, such as SmallTalk.
The present invention either implements a client/server
setup or a master/slave setup that involves forking tasks to
perform background operations and using the present inven-
tion to communicate with these tasks. Because communi-
cations are serialized by the operating system, remote mes-
sages performed by a slave task appear to the program just
like other asynchronous events, such as mouse clicks, allow-
ing the design of a consistent user interface. Modularity,
extensibility and safety are gained by spawning new tasks.
The ability to implement recursive remote messaging is an
important feature of the present invention, for example when
user interaction is required to perform the desired task.

The present invention can also be implemented in a
client/server setup. In the client/server setup, both the client
and the server begin independently. Communication is
through an agreed upon method. The client and server can
communicate with each other by looking for a manager for
the communications channel (e.g. network).

The present invention provides a new alternative for
developing extensible programs. Instead of adding function-
ality by adding code that defines new object classes and then
loading that code into a main program, a new program is
created and forked. If there are any errors in the new
program, they reside outside the main program improving
performance. In addition, processing is parallel and asyn-
chronous, leading to improved performance.

In one embodiment, the first time a message is sent to a
proxy, the receiver is asked for the method signature in order
to allow the proxy’s domain to encode the arguments. This
can increase communication time. One alternative embodi-
ment provides for prior agreement between processes so that
two tasks know in advance the method signatures for their
proxies. Alternatively, when prior agreement is not possible
due to the dynamic nature ol the required exchange, the
atomicity of the signature request can be changed to com-
municate all the public signatures for a given proxy, result-
ing in a single “meta-protocol” transaction for the proxy.

When an object is passed by reference, a new proxy is
typically created. The present invention includes safeguards
to guarantee that if a remote object is encoded twice, the
same proxy (in the pointer equality sense) will be obtained
in the local domain. This unicity of proxies is maintained by
4 table which maps tokens of remote objects to their local
proxies and looks for previously created proxies when an
object pass by reference is decoded. The present invention
keeps all proxies until the communication with the remote
domain ends. At that time, the table is used to de-allocate all
proxies. -

The operation of the present invention is illustrated in
FIGS. 3A-3C. Referring first to FIG. 3 A, a local process
901 is separated from a remote process 902 by boundary
906. The boundary 906 could be a separation between

WI-Apple0004682



5,481,721

11

programs on the same computer or it could represent the
separation of two different machines on a network. The local
process 901 includes a sender object 905 that sends a
message to receiver object 909. The object 909 is located in
the remote process 902. However, the sender object 905 can
send its message 903 to the remote object as if it were a local
object.

The local process 901 includes a receiver proxy 904 that
accepts the message 903. The receiver proxy 904 is an object
that executes a forward:: method. The receiver proxy 904
encodes the message and transmits it across the process
boundary to the remote object. In the preferred embodiment
of the present invention, the proxy 904 encodes the message,
(which is a language based message such as, for example, an
objective C message), as an operating system message, such
as a Mach message 907, and transmits it to the receiver
object 909 in the remote process 902. The receiver object
909 decodes the Mach message into a langnage based
message for execution or handling in the remote process
902.

The present invention supports nested, recursive, remote
messages. That is, when a message is sent to a remote object,
that remote object may send other messages back to the local
process (which may again send other remote messages), as
part of its calculations before providing a reply to the initial
message. These messages may be nested arbitrarily deep. If
only the sender itself is sent as an argument, (such as
illustrated in FIG. 3 A), the receiver determines what further
information is required [rom the sender and sends messages
back to the local process to obtain that information before
generating a reply.

Referring to FIG. 3 B, the receiver object 909 requires
additional information from the sender object so it generates
a request message to the sender object 904. However, since
the sender object 904 is not resident in the remote process
902, a sender proxy 910 is created in the remote process 902.
The sender proxy 910 encodes the request into a Mach
message and transmits it across process boundary 906 to
sender object 905. The Mach message is decoded into a
language based message and generates a response. This
response is sent back to the receiver object 909, (again via
receiver proxy 904).

Referring to FIG. 3 C, the receiver object 909 then
performs an execute 911 on the original message to generate
aresult object 912. The result object 912 is encoded 913 and
transmitted across process boundary 906 to resuit proxy 914
in local process 901.

In the present invention, proxies are not required to be
created in advance. Once one proxy of a remote process
exists, N proxies can be created for communication with that
process. The present invention also permits the sending of
objects themselves across process boundaries.

The recursive nature of the present invention is useful
when the remote object does not recognize a method sent to
it by a local object. For example, the local object may send
a message (0 a remote object requesting it to execute the
method “foo”. If the remote object does not recognize the
method, it can ask the sending object “what is foo?” All
objects recognize the method “what is”. The sender object
can then respond with instructions concerning the nature of
the method being investigated. For example, the sender can
reply that foo is a method that requires an integer. If no
integer has been provided, the remote object can then
request the integer.

The creation of the first proxy is provided automatically
in the present invention. The first time a process is accessed,

20

25

30

35

40

45

50

55

60

65

12

it must call a process referred to as the “proxy receptionist”.
By definition, the first call to a new process is to bc at
sequence number 0. The first proxy by definition has a
sequence number of 0. Subsequent proxies, as needed, are
defined and the sequence numbers are provided to the other
process.

In the preferred embodiment of the present invention,
communication between processes is implemented in a
master/slave or client/server relationship. In the case of a
clicnt/server relationship, the server may “publish” its port
in an appropriate place on the system. The client looks up
this port and then uses it to initiate the bootstrap-meta-
protocol described above.

The establishment of a connection defines only the first
proxy on cach side. Proxies for any other objects that need
to be communicated are created dynamically as they are
cncountered. For example, if a remote method returns a new
object, a new proxy is created when decoding the result
locally, such that the local program could send a message to
this new remote object without any explicit setup.

Once a connection is established, a message may be sent
(in either direction). To send a message, the arguments must
be encoded into a form that is representable in a Mach
message, so that the receiver may decode them correctly. To
do this, the sender must know the method signature of the
message. The method signature is part of the “protocol” that
both sender and receiver must understand in order to com-
municate, and is a domain-independent encapsulation of the
method name, its argument types, and its return value type.

Although a protocol may be arranged by prior agreement
in many cases, the present invention determines the protocol
dynamically by asking the receiver how t0 encode the
arguments for each message as it is encountered. During the
first attempt to send a given message to a remote object, the
local domain consults the remote domain to get the signature
corresponding to the actual class implementation that will
ultimately receive the message. This method signature is
cached on a per-connection basis, with the assumption that
the class of a remote object will not change for the duration
of the comnection. Thus, subsequent messages use the
cached signature, and do not have the ovcrhcad of this
“meta-protocol” transaction. This dynamic aspect is useful
for type checking, and allows one program to “learn” how
to talk to another program.

The argument encoding for standard C data types is
explicit and strictly pass-by-value, and maps substantially
directly onto a Mach message. Pointers to C data structures
are not encoded. Arguments that are first-class objects (as
opposed to simple C data types) are handled specially; they
are asked to encode themselves. The default encoding
scheme that most objects inherit is to allocate a token (if one
does not already exist) in the local domain, and cncode only
that token. Along with the port of the local domain, this
constitutes an object reference (via proxy), and when it is
decoded on the receiving side, results in a new proxy for that
remote object.

Thus, first-class objects by default get passed by reference
instead of by value. For example, when domain A sends a
message with object X as an argument to a remote object in
domain B, a new proxy is created in domain B to represent
X. Any subsequent message that domain B sends to X results
in another remote object transaction. In the present inven-
tion, an implementation of an object class is free to choose
to implement a different encoding scheme, for example one
that encodes the object by value, though this requires that
both sender and receiver implement that class of object. The

WI-Apple0004683



5,481,721

13

“pass-by-proxy” scheme does not have this restriction and is
generally preferred.

Because objective C implements functional messages, a
return value is always returned in a reply message. It is
encoded exactly the same way as arguments are. In particu-
lar, if the result is an object or a proxy, it is encoded as a
proxy or an object, respectively, in the other domain. The
reply message also cncodes information about errors or
exceptions that may have occurred, so that they can be raised
in the local context. That is, an error occurring while
executing a message sent to a remote object is caught and
returned to the caller, so that the cxception is raised in the
local domain. This makes error handling transparent.
Remote exceptions may be handled the same way as local
exceptions.

The use of a single port to represent a domain of objects
allows an efficicnt and simple implementation. A one-way
mess$age is used when forwarding a message to a remote
domain. Messages are received on the local domain’s single
published port while waiting for the reply. Since all mes-
sages (including both the reply message and any other
messages initiated from remote domains) arrive on the same
port, each one can be handled serially. There is no global
state 10 keep track of (the logic is implemented in a re-
entrant manner), and each message and reply have maiching
sequence numbers, so it can be determined when the correct
reply has been received.

In effect, the low level routine to actually forward the
message to the remote domain becomes the main loop of the
program until the reply is received. There may be many
nested levels of this low level routine at one time. Qutside
the scope of a locally-initiated remote message (i.e., the
“idle” state of waiting asynchronous messages to arrive), the
local domain’s port is listened to by the main program, along
with other non-remote-object related events. This approach
contrasts with that of the prior art McCullough system,
where a process or thread is forked to field every expected
reply. The present invention achieves an order of magnitude
in performance by avoiding the forking when communicat-
ing.

An example of a compuler program listing that may be
used to implement the present invention is described in
Appendix A. This computer program listing is given by way
of example only. The present invention may be practiced
using other programs and methods as well.

Automatic Forwarding of Messages

The present invention, in its preferred embodiment, takes
advantage of a method referred to as “automatic forwarding
- of messages.” This method is the subject of copending
patent application Ser. No. 07/695,316 filed May 3, 1991,
entitled “METHOD FOR PROVIDING AUTOMATIC
FORWARDING OF MESSAGES AND METHODS” and
assigned to the assignee of the present invention. This
method is described below.

In objective C, when an object receives a message that
contains a method that the ohject does not recognize, an
exception is provoked leading to an error. The present
invention, instead of provoking an exception, redirects the
message to an acquaintance that can understand the mcs-
sage. For example, if an object receives a message contain-
ing a method that the receiving object does not contain, the
message is forwarded to an acquaintance object that does
contain the method. This provides the advantage of inher-
iting the method from the acquaintance object but does not

w

10

15

20

25

30

35

40

45

50

55

60

65

14

require the first receiving object to actually have the method
itself. This reduces code size the memory requirements.

The present invention has a plurality of uses. For
example, a new object class can be defined so that one of its
instances (attributed object) adds an attribute to another
object (its forwardee). In that situation, automatic forward-
ing occurs when an attributed object reccives a message that
is irrelevanl to the attribute, and the method is forwarded to
the forwardee. In another situation, some functionality is
applicd before and/or after the forwarding. This can be used
in the case of a locking data structure where all methods
must be redirected to the locked data after acquiring the
lock, and where the lock must be released after the execution
of the forwarded method. The present invention also has use
in the casc of forwarding messages in a distributed envi-
ronment where there is no explicit forwardee. Rather, there
is a network address of the forwardee.

The implementation of the present invention in the pre-
ferred embodiment requires trapping the “message not rec-
ognized” exception of objective C, retrieving all of the
arguments of the unrecognized message, and sending the
“forward::” message to the object.

The resulting automatic forwarding system of the present
invention is more powerful than multiple inheritance and is
transparent to the programmer and developer. The system is
general, because the forwardee is not explicit, thus permit-
ting solutions to a large class of problems.

The present invention uses the forward:: command so that
subclasses can forward messages to other objects. The
format is forward: (SEL) aSelector:(marg__list) argFrame.
When an object is sent an aSelector message, and the run
time system cannot find an implementation of the method
for the receiving object, the ran time system sends the object
a forward:: message to give it an opportunity to delegate the
message 10 another object. If the forwardee object cannot
respond to the messagc cither, it also has the opportunity to
forward the message. A forward:: message is generated only
if a selector method is not implemented by the receiving
object’s class or by any of the classes it inherits from.

The forward:: message thus allows an object to establish
relationships with other objects that will, for certain mes-
sages, act on its behalf. The forwarding object is, in a sense,
ablc to “inherit” some of the characteristics of the object it
forwards the message to. The forwarding object is not
limited to the forwardees it may select, and a forwardee
relationships may be formed with more than one object at
the same hierarchical level. Therefore, the present invention
provides the advantages of multiple inheritance without the
code size problem.

In addition to forwarding messages, the forward:: method
can locate code that responds to a variety of different
messages, thus avoiding the necessity of having to write a
separate method for each selector.

If implemented to forward messages, a forward:: method
has two tasks. First, to locate an object that can respond to
the aSelector message (this need not be the same object for
all messages). Second, to send the message to that object
using the performv:: and performv method.

The operation of the present invention is illustrated in the
flow diagrams of FIG. 5. At step 501, Object A sends an
aSelector message to object B. At decision block 502, the
argument “Implementation exists in Object B?” is made. If
the argument is true, the method of the aSelector message
can be executed by object B. If that is the case, the system
proceeds to step 503 and the method is executed. If the
argument is not true, the system proceeds to step 504 and
invokes the forward:: method.

WI-Apple0004684



5,481,721

15

The forward:: method then performs the first of its two
tasks at step 505. Namely, it attempts to locate an object to
respond to the aSelector message. At decision block 506, the
argument “Object found?” is made. If the argument is true,
then forward:: has successfully found an object to respond to
the aSelector message. In the present invention, the forward-
ing object is typically a proxy object.

The system then proceeds to step 507, the message is
encoded and transmitted as an operating system message to
another process. At step 508, the operating system message
is decoded and provided to the destination object. At step
509, the destination object executes the method of the
message to generate a result. At step 510, the result is
cncoded and transmitted to the first process as an operating
system message. At step 511, the message is decoded and the
result is provided to the sending object.

If the argument at decision block 506 is not true, the
system proceeds to decision block 512. At decision block
512, the argument “forward again?” is made. If the argument
is truc, the message is forwarded again and a search for an
object to respond to the message is made. If the argument is
false, the system proceeds to step 513 and an exception
(error) is invoked.

In the case in which an object forwards messages to just
one destination, a forward:: method could appear as follows:

- forward: (SEL)aSelector :(marg_ list)argFrame

if ([friend respondsTo:aSelector])
return {friend performv:aSelector:argFrame}:
return [self doesNotRecognize:aSelector];

ArgFrame is a pointer to the arguments included in the
original aSelector message. It is passed directly to per-
formv:: without change. The default version of forward::
implemented in the object class invokes the does not rec-
ognize: method. It does not forward messages. Thus, if a
user chooses not to implement forward:: methods, unrecog-
nized messages will be handled in the usual way.

10

15

20

25

30

35

40

16

The objective C run time code routines for implementing
automatic forwarding of messages is as follows:

/{ provide a default error handler for unrecognized messages
static id-forward (id self, SEL sel, . . .)
{
id  retval;
I/ the following test is not necessary for Objects (instances of
Object)
/! because forward:: is recognized.
if (sel =@selector (forward::)) }
__objc__emor (self, __enDoesntRecognize, SELNAME
(sel));

return nil;

t
retval =[self forward: sel : &self];
return retval;
{
Method smt =(Method) objc__malloc (sizeof (struct
objc__method));
smt->method__name sel;
smt->method__types = "";
smt->method_imp = (IMP)__forward;
__cache__fill (savCls, smt);

Method smt = (Method) objc__malloc (sizeof (struct
objc__method));
smt->method__name = sel;
smi->method__types ="";
smt->method__imp = (IMP)__forward;
cache__fill (savCls, smt);

I/ the class does not respond to forward: (or, did not supply a
dest)
{ s
Method smt = (Method) objc__malloc (sizeof (struct
objc__method));
smt->method__name = sel;
smt->method__types = "";
smt->method__imp = (IMP)__forward;

_cache_ fill (savCls, smt);

return (BMP)__forward;

Thus, a method and apparatus for providing distributed
processes is described.

WI-Apple0004685



5,481,721
17 18

#import <stdlib.h>

#import <stdarg.h>

fimport <objc/HashTable.h>
#import <objc/hashtable.hi>
#import <syvs/message.h>

/* Declarations that will go away */
extern SEL _sel_regigterName(STR key) ;

VARREA AR SRS Definitions AR R R R RSl LY

extern int defaultCommTimeoul; /* in millisecs, <0 means infinite */
extern int remoteMessageReceiveCount; /* increments when a msg is received */

/* The following type of function may be passed to the beginListeningOn:rootObject: m
ethod. It gets asynchronously called during remcote message sending. For example, an app co
uld register the port and function with DPSAddPort when the boolean is YES (and DPSRemoveP

ort when NO). */

typedef void (*remote_message_handler_t) (msg_header_t *msg, void *userData);

typedel void {*receive_enable_proc_t) {port_t port, remote message_handier_t fun, BOOL shou

1dEnable);

typedef enum {
#define REMOTE_EXCEPTION_BASE 36000 /* less than appkit base */
/* Format of exceptions is a label and a message string */
GENERIC_REMOTE_EXCEPTION = REMOTE_EXCEPI'ION_BASE,
TIMEOUT_REMOTE_EXCEPTION,
LAST_ REMOTE_BEXCEPTION

} RemoteException;

VAsi AR AL R ERE S LR Communication ARKR AR IRARRNXXRARA AN AR IR ]

@interface Communication: Object |

@public
port_t sendPort;
int timeoul; /* in milliseconds */

NXHashTable *objectsGivenaway:
HxHashTable *allProxies;

+ beginbListeningOn:{port_t)listenPort enableProc: (receive_enable proc_t)aProc;

/* Initialize the remote object system.
enableProc is called immediately with a boolean of YES. */

+ new: (port_t)port timeout: (int)aTimeoul;
+ findCommForPort : (port_t)aPort;

@end

/******i*i***ii*** Remote Objects ***i**t***********i**k****/

ginterface RemoteObject: Object {

Communication *comm; /* nil-means *“local" */
unsigned name; /* object name; 0 means localRoot */
HashTable *knownSelectors; /* cache */

}

+ messageReceived: (msg_lieader_t *)msg;

WI-Apple0004686



5,481,721
19 20

+ newRemole: (unsigned) remoteiName withCommunicaltion: (Comnunication *}communication;
/* This is used only for bootstrap */

+ registerbocalRoot:root;
/* Register the local root, and return a remote object with name 0;

Can only be called once */

+ newlLocal:local withCommunication: (Communication *}communication;
/* search for a local-RemoteObject that corresponds to local id.

1f none found, creates one */
-~ (unsigned) remoteObjectNaie;

- (unsigned) methodhrgSize: (SEL) sel:;
/* Size of the arguments of the remote object,

0 ifLf error */
- forward: (SEL) sel : (void *) args;
Gend

including self and sel;

VALEARAASR SRS LR Eucoding Protocol AARAAIRIRBL IR AR A AR R IR SRR ]

ginterface Object (Object_MakeRemote)
- encodeRenotelyFor: (Communication *)communication EreeAfterEncoding:(BOOL *}flag:

/* 'this method is called For each object being encoded; By default, it consists in cre
ating a new "local® remote object (i.e. passing the object by reference). To pass the obj
ecl by value, just return the objeck. To substitute another object, just return it.

LIl flag is set, the returned object will be freed after encoding. */

- afterbPorlLReading: (Communication *)communication:
/* 'This method is called after decoding an object to give an opportunity to replace it
; oriyinal object can be freed */

- instanliateObject: {const char *)}classNaue;
- setOutlet:(const char *)oulLletName with:dest;

dend

WI-Apple0004687



5,481,721

21

Iimport *"RemoteUbject.h”
§import "NXpPortStream.h®

#import <string.h>

Jimport <stdio.h>

fimport <libc.h>

fimport <cthreads.h>
#import <mach.h>

fimport <syslog.h>

#import. <cbjc/error.h>
fimport <objc/List.h>
#import <objc/objc-runtime.h>
#import <kern/mach_paran.h>
#import <sys/message.h>

VAARSARAREARAL AL D

Forward befinitious

22

**waaa*nwt«****aﬁﬁi*s\ﬁ*iwi/

static void handleRemoteMessage(msg_header_t *m, void *userbata) ;
static void remoteask (port_t port, msg_header_t *msg, int timeout) ;

#if 0 // Never tried

static void remoteTell{port_L target, msg_lieader_t *msg, port_t sender, int timeout};

ffendif
Utilities

/i**ﬁ***ii*i*h%i*i

-

int defaullComulimeout = 15000;
BOOL enableWarning = NO;

*ii*ii**ii*kﬁ&ki**t****ii*/

static void logv{const char *format, va_list args) {
printf(“RemoteObjects{pid %d]:\t", getpid(});

vprintf{formal, args):

}

static void RoOLog {const char *formatl,
va_list args:
va_start{args, format);
logv (format, args):
va_end{args) ;

)

static void warning(const char *format,
va_list args:
va_start {args, format);

if {enableWarning) logv(format, args};

va_end{arygs) ;
}

gtatic void error{(const char *format, .
va_list args:
va_start (args, format);
logv (format, args);
va_end{args) ;
NX_RAISE(GENERIC_REMOTE_LXCEPTION,

}

static int generateSeguenceNumber(} {
static int number=0;
number+s;
if ('number) number = 1;

")

{

vel)

.

{

{

"Internal error", NULL);

/* useless */

WI-Apple0004688



5,481,721
23 24

reburn number;
}
@interface Object (Private_Imports)
- reallyFree;
€end
/Rﬁﬁﬁhhhﬁhﬂﬁ**ﬁﬁ*k Selector Il)ro -ﬁA&ﬂii*ilkﬁ***#&*ﬂﬁ*‘ﬂ*kﬁi/

@interface RemoteMethodlnfo: Object {
NXAtom typedesc;
}

staktic RemoteMethodInfo *knownRemobeMethodInfo = nily

+ localMethodinfoFor: (Class)class :(SEL)sel;
/* Return RemolteMethodInfo for a local method;

Can return nil */

encodeMethodParams: (void *)args onto: (NXPortStream *)stream;
/* encode the method frame onto stream (excluding self and sel) */
(void *)decodeMethodParamsiirom: (NXPortStream *)stream;

/* decode the method frame from stream;
return a freshly malloced pointer, never NULL (unless error) */

1

enzodedethodRet :result onto: (NXPortStream *)stream;
/* encode the method return value */

- decodeMelhodRetFrom: (NXPortStream *)sEream:
/* decode the return value. */

- (unsigned)sizeQfParams;
/* Return the size of all parameters including self and sel */

Rend
@implementation RemoteMethodInfo

static unsigned hashMethodInfo{const void *info, const void *data)
couslt RewoteMethodInfo *rm = data;
return (unsigned)rm->typedesc; /* depends on the fact its unigeud */

)

static int isEqualMethodInfo({const void *info, const void *datal, const void *data2} {

const RemoteMethodInfo *rml = datal:
const RewmoteMelLhodInfo *rm2 = dataz;
return {rmi->typedesc == rm2->typedesc);

}

static NXHashTablePrototype proto =

.
H

{hashMetliodinfo, isEqualMethodInfo, NXNoEffectFree, 0)

static NXBashlable *allMethodInfos = NULL;
+ initialize {
1f (! knownRemoteMethodinfo) (
allMethodInfos = NXCreatellashTable{proto, 0, NULL):
knownRemoLeMethodInfo = [RemoteMethodinfo localMethodInfoFor: (Class) {[Object clas
s} :@selector{remoteMethodInfo:)];

}

return self;

}

+ localMethodInfofFor:(Class)class : (SEL)sel {
Hethod method = class_getInstanceMethod(class, sel);

RemoteMethadInfo *previous;

WI-Apple0004689



3,

1

1

5,481,721
25

il (¢t method) {

error ("*** localMethodInfoFor:: for ‘%s' with "%s’ return nil\n", [{id} class name

sel_getName(sel}};
return nil;

}

self = [super new];

typedesc = NXUniqueString (method->method_types);
previous = NXlashGet {allMethodInfos, self};

if (previous) {[selfl freel; return previous; }
NxHashInsert{alltethodInfos, sell};

return self;

26

encodeRemotelyFor: (Communication *)communication freeAfterEncoding: (BOOL *}flag {

return self;

writePortStream: (NXPortStream *) stream {
[super writePortStream: stream]:
warning{"writing a Method:%s\n", typedesc):
NXWritePortTypes {stream, "%", &typedesc);
return self;

readPortStream: (NXPortStream *) stream {
[super readPortStream: stream];
NXReadPortTypes{stream, "%", &typedesc):
warning ("reading a Method:%s\n", typedesc);

return self;

encodeMethodParams: (void *)érgs onto: (NXPortStream *)stream {
gtruct objc_method met;

unsiygned nb;

unsigned index = 2; /* skip result, self and sel */
int offset0;

char *type:

met .method_types = {char *}typedesc;
nb = method_getNumberOfArguments {(kmet) ;

NXWritePort'lypes{stream,
method_getArgumentInfo(&met, 0, &type, &offset0};

while ({index < nb) {

char *type;
int . offset = 0;
void *arg:

method_getArgumentinfa{&met, index, &type, &offset):
if (1 offset) error{("*** encodeMethodParams:onto:

ype desc %$s\n”, index, typedesc);

arg = ({char *)args)+offselt-offset(;

warning {"encodeMethodParams:onto: type=%s value=0x%x\n*,
NXWritePortfypelnternal (stream, type, arg):

index++:

)

return self;

(void *)decodeMethodParamsFrom: (NXPortStream *)stream {
struct objc_method met;

unsigned nb;
unsigned index = 2;
unsigned count;
void ) *args;

int ofEsetl;
char *type;

"iv, &nb); /* just for redundancy */

type.,

cannot extract %d argument for ¢

*{void **})arg);

WI-Apple0004690



5,481,721
27 28

wmal coethod_types = {char *)typedesc;

nb = method_getNumberQfArguments (&mel.) ;

NXReadPortTypes{stream, “i", &count);

if (count != nb) {
error { "decodeMethodParamsFrom: incowpatible methed params®);
return NULL;

) .
method_getArgumentinfo (&met, 0, &type, &offsetd);

args = calloc([self sizeOfpParams}, 1)
while (index < nb) (

char *type;

int offset = 0;

void *arg;

method_getArgumentInfo(&mel, index, &type, &olfset):

if {1 offset) error("*** decodeMethodParamsFrom: camnot extract %d argument for ty

pe desce %s\n", index, typedesc):
arg = {{char *)args)+oflset-offset0;
NXReadPortTypelInternal (stream, type, arg):
warning ( "decodeMethodParamsFrom: type=%s value=0x%x\n", type, *(void **}arg):

index++;
}
return args:;
}

- encodeMethodRet tresult onto: {(NXPortStream *)stream {
//?? -> SN: way to yet return types?
if {typedesc(0]) == ‘v’) return self;
if (typedesci0] == ‘c’) {
//?7? BOGUS, of course
NXWritebPortTypeInternal (stream, "i", &result);
} else {
NXWritePortl'ypelnternal (stream, Lypedesc, &result);
) '
return self;

)

- decodeMethodReLFrom: (NXPortStream *)stream {
id result = nil;/* iwmportant init.
f¢?? -> SH: what iff result more than 4 bytes?
il (Lypedesc[0] == v’} return nil;
if (typedescl0) == ‘c’) {
//2? BOGUS, of course
NXReadPortTypelnternal (stream, "i®, &result):

} else {
NXReadPort'lypelnternal (stream, typedesc, &result}:

for result less than 4 bytes */

}
return result;

- (unsigned)sizeOlParams {
struct objc_method met;
met .method_types = {char *)typedesc;
return method_gelSizeOfArguments {&met};

}
€end

@interface Object (Object_RemoteMethodInfa)
- remoteMethodInfo: (SEL)sel;
@end

@implementation Object (Object_RemoteMethodInfo)

- remoteMethodInfo: (SEL)sel {

WI-Apple0004691



5,481,721
29

return [RemcteMelhodinfo localMethodinlotor: (Class) {sell class]
}
@end
/*iidﬁﬁiiii*iﬁiii* Com]unicatior‘ ﬂkﬁ*i***iii**.*{rﬁi*hkiﬁﬁ‘*/

@implementation Communicatiou

typedel struct _LocalToRemote {

id local:;

RemoteObject *remotLe; /* remote->name ==
} LocalToRemote;

static void freeLocalTloRemote{const void *info, void *data) {
LocalTloRemote *ltr = data;
[llr->remote reallyFree];
[ree(data);

)

static NXilashTablePrototype proxyProto;
static id commList = nil;

static receive_enable_proc_t. enableProc = NULL;
static port_t replyPort = PORT_NULL: -

+
replyrort = listenpPort:
port_set_backlog (task_self (), listenPort, PORT_BACKLOG_MAX) :

enablebroc = aProc;
if (enableProc) (*enableProc) (replyPort,handleRemoteMessage, YES) ;

return self;

}

4+ new: (port_t)port Limeout: (int)aTimeout {

MXHashrtablePrototype protol = NXPLrSiruclLKeyProtolypes
protol. free = freelLocal7Tolemote;

if {! commbist) commlist = [List new};

self = [super newl;

sendiPort = port;

timeout = aTimeoukt;

objecLsGivenAway = NXCreateHashTable(protol, 0, NULL):
alliroxias = NXCreateHashTable({proxyProto, 0, NULL):
{comulist addObject:sell];

return self;

+ findComwForPort: {port_L)aPort {
int index = [commbist count];

while (index--)
if ({({Communication *)[commList objectAt:index})->sendPort

return f[commList objectAt:index]:
return nil;

- free {
[commList removeObject:self]:
NXFreellashTable{objectsGivenAway) ;
tiXFreellashTable{allProxies) ;
return [super free};

30

:sel]:

(unsigned} local */

beginlisteningOn: (port_t)listenbPort enableProc:(receive_enable_proc_t}aProc {

== aPort}

- beforeEncoding:object onto: (NXPortStream *)stream freeAfterEncoding: (BOOL *)flag {

WI-Apple0004692



5,481,721
31 32

retwn {object encodeRemoielyFor: stream->communication {1eedfterBncoding:flag];

)

- afterbecoding:object [rom:(NXPortStream *)stream {
relurn [object afterPortReading: stream->communication}:

}

Qend

VARARA R AR LS AR Remote Objects HRAARERAAFARARRA AR AR T NA* /

static id localRoot = nil; .
static id localRemoteForRoot = nil;

@implementation RemoteObject
+ initialize {
/* we have to initialize knownRemoteMethodInfo! */
[ RemoteMethodinfo initialize]:
return self;
}
+ newRemote: (unsigned) remoteName withCommunication: (Communication *)communication {
sell = [super newj;
commn = communication;
name = remokeName; .
if (NXHashInsert (communication-»allProxies, self)} error("newRemote: already in table!
") :
return self;
}

+ newLocal:local withCommunication: (Communication *)communication {
LocalToRemote pseudo; :
Local'l'oRemote *ltr;
iF {1 local) return nil;
if {local == localRoot) return locallemoleForRoot:
pseudo.local = local:
1tr = NXHashGet {communication-~s>objectsGiveniway,
if (lLlr) return ltr->remote;
ltr = malloc(sizeof {LocalToRemote)};

Itr-»local = local;

jtr->remaote = [self new];

ltr->remote->name = (unsigned)local;
NXilashInsert {communication->objectsGivenaway, 1ltr};
return ltr->remote;

&pseudo) ;

+ registerLocalRoot:root {
if (localRoot) error("registerLocalRooL: root registered twicel"};

localRoot: = root;
returu {localRemoteForRoolt = (self new]):

+ messageReceived: (msg_header_t *)msg {
handleRemoteMessage (meg, NULL):
return self;

}

- reallyFree {
[knownselectors free):
return [super freel;

- free {

WI-Apple0004693



5,481,721
33 34

syslouf{LOG_ERR, "Remole Object Uxbx received Lree", sell);

return nil;
]
static unsigned hashProxy (const void *info, const void *data) {
return {(RemoteObject *)data)->name;
}
static int isEqualProxy({const void *info, const void *datal, const void *data2} |
return {{RemoteObject *)datal)->name == {(RemoteObject *)datal)->name;
}
static void freeProxy(coust void *info, const void *data) {
[{id)data reallyFree];
) .

stalic NxHashTablePrototype proxybroto = {hashProxy, isEqualProxy, freeProxy, 0},

-~ {unsigned) remolLeObjectlame { return name; )}

- remoteMethodiInfo: (SEL}sel (

id res;
id args{d];
if {sel == @selector({remoteMethodinfo:)) return knownRemoteMethodInfo; /* to avoid

inite recursion */
res = {knownSelectors valueForKey: (void *)sel]:

if (res) return res:
//?? -> SN How teo [ill args cleanly
bzerofargs, sizeof(id)*4);

{ .
class_getInstanceMethod((Class) {Object class}], @selector({remoteMe

Method method =
thodlufo:));

char *type;
int offesct2;
int offseltly
SEL *ref;

method_getArgumentIinlo (method, 0, &type, &offseld):
mezLhod_getargumentInfo{method, 2, &type, &offset2);
vef = (SEhL *) (({char *)arxys)tollsetZ-olfsetl);

*ref = sel;

}
reg = [(id) self forward:@selector (remoteMethodInfo:) :arys];

iE (! knownSelectors) knownSelectors = {[HashTable newKeyDesc:":"};
I knownSelecltors insertKey: {void *})sel value:res]:
return res;

encodellemotelyFor: (Communication *
return sell)

- writePortStream: (NXPortStream *} stream {
[super writePortStream: stream];
HiWritePortTypes {(stream, "ii", &cown, &name);
return self;

}

~ readbPortStream: (NXPortStream *} stream {
{super readPortStream: slyream];
HXReadPortTypes (stream, "ii", &comn, &name);
return sell;

}

- afterPortReading: (Communication *)commnunication {

)comnunication freeafterkEncoding:{(BooOL *)flag (

WI-Apple0004694



5,481,721
35 36

if (' comu} {
id previous:
/* it was local for the other guy */
warning ("in afterPortReading - read Remote %d\n*, name);
comm = communication;
previous = NXHashGel (communication->allProxies, self}:
if {previous} { )
warning{"receiving same name=0x%x previous=0Ux%x self=0x%x\n", name, previous,
self);
[self reallyFree];
return previous;
}
NXHashInsert {communication->allProxies, self}:
return self;
} else (
LocalToRenote pseudo;
LocalToRemote *ltr;
pseudo.local = (id)name;
if (! name) (
if (1 localRoot) error{*invariant broken in afterPortReading:"):
[self reallyFree];
return localRoot;

} .
ltr = NXHashGet (communication-sobjectsGiveniway, &pseudo):

if {t ltr) error("alterPortReading:");
if ((unsigned)ltr->local != name} [
error{"alterPortReading: broken invariant");

}

warning{"in afterPortReading - converting Remote %d into local 0x%x\n", name, ltr-

>local);
[self reallyFreel;
return ltr->local;

- {unsigned) melLhodArgSize: (SEL) sgel ({
RemoteMethodInfo *selInfo = [self remoteMethodInfo:sel):

iE (! selinfo) return 0;
return [sellnfo sizeOfParams];

- Eorward: {SEL)sel :(void *)args {

char buffer [MSG_SIZE_MAX] :

msy_header_Lt *msy = {wsg_header_t *)buffer;

NXALom selName = NXUniqueString{sel_getHNawme [sel));

int sequence = generateSeguenceNumber();

NXPortstream *stream = NXOpenEncodePortStream{msg, Sequence, comn};
RemoteMethodinfo *selinfo = [self remoteMethodInfo:sel];

id result;

int errorCode;

if (! selInfo) error("forward:: cannot find remote selector %s", selName);

warning ("entered forward:: self=%d selName=%s\n", name, selName):

NXWritePortTypes {stream, "@%", &self, &selName}:
[selinfo encodeMethodParans:arys onto:streanm];

NXCloseEucodePortStream(strean) ; .
warning (*in forward:: - %4 made packet [or [0x%x comn:%x %5 ...]\n", name, comm, self

gelName) ;

remoteAsk {comm->gendPort, msg, comm->timeout);

/* let's decode the result */ .
warning ("in forward:: selName-%s received answer\n", selName):

WI-Apple0004695



5,481,721
37 38

stream = NXOpenDecodePortiStream{msg, comn);

NXReadPortTypes (stream, "i", &errorCode):

if ‘{errorCode} error{"forward:: Error occurred during remote execution);
result = {selInfo decodeMethodRetFrom:stream];

tXClosebDecodePortStream(skream) ;
warning("in forward:: - %d result decoded for [0x%x conmm:%x %9 ...]J\n", name,
1F, selName}l;
return result;

}

Qend

AR AR R R R R R R ObjECC Misc LR RS A R R AL L Y

@interface Object {Object_MakeRemobte)
- setAction: (SEL) theSeleclor;
@end

@inplementation Object {Object_MakeRemote_Import}
- encodeRemotelyFor: {Communication *)}communication freeAfterEncoding:(BOOL *)flag {

warning{*in encodeRemotelyFor - converting local Ox%x (%s) into remote\n", self,

namell;
return {RemoleObject newLocal:self withComaunication:communication];

- afterborlLReading: (Communication *)comuutication {
return self;

- instantiateObject: (const char *)className {
return [objc_gelClass{{char *)className) newj;

selOutlel: (const char *)outletName with:dest {
char methodString{256};
SEL sel;
strepy (methodString, "set"):
strcat (methodString, outletName);
streat (methodString, ":");
1E (methodStringl[3] >= ’a' && methodString{3] <= ‘z’)
methodString(3] += 'A’ - 'a’;
sel = _sel_registerName({char *)NXUniqueString(methodString});
#if 0 :
if ([self respondsTo:sel]) {
{self pexform:sel with:dest];

} else {
object_setiInstanceVariable(self, methodString, dest);

}
telse

[selfl perform:sel with:dest];
tendif

return self;
)

@gend

/ﬁ*‘*ﬁ&ﬁiﬁi*l*ﬁ*iﬁ Message transport *tiiki*ﬁ***’ﬁﬁ**i**v\iiﬁi**/

#define RO_TELL_MS5G_ID {232323)
fidefine RO_ASK_MSG_ID (323232)
lidefine RO_REPLY_MSG_ID (233223)

#define DEFAULT_TIMEOUT (15000}

static void remoteReply (port_t zrPort, msg_header_t *msg, int timeout):

comm, se

[self

WI-Apple0004696



5,481,721

39 40

static void handleRemoteAsk{msg_header_t *msy, port_t sender, id comuunication) {
/*

** parform a remote RPC.

** qhis function may call many callouts to enableRemoteListening and
** disableRemolelistening as it recurses.

** exceptions may arise.

*/
NXALom sellame;

id volatile result = nil;

NXPortStream *stream = NXOpenDecodePortStream{msy, communication);
char *arys;

id self;

SEL sel;

int errorCode = 0;

RemolteMethodlnfo *selinfo;

int sequence = NXGetPortStreamSequence(strean);
char buffer {MSG_SIZE_MAX];

warning ("in remoteAnswer received packet\n®);
NXReadPortiypes{stream, "@%", &self, &selName):
warning(*in remoteAnswer selName=%s\n", selName);
sel = sel_getUid{({char *) selName);
if (! sel) error ("handleRemotensk:
sellnfo = [self remoteMethodInfo:sell;

[selinfo decodeMethodParamsFrom:stream} ;

received message with unknown sel=):

args =
NXCloseDecodebortStream({stream) ;
if {! args) { errorCode = -2; goto done:; )
NX_DURLING
result = objc_msgSendv(self, sel, [selinfo sizeOfParams], args):
NX_HANDLER )
...J\n", self, selName

ROLog (**** Error while excuting remote message for [0x%x %s

errorCode = -1;
NX_ENDHANDLER;
freel(args);

/* let’'s encode the result */
done:
/* we cannot reuse msg here, regrettably,
lhave an 8K buffer but a copy only big enough for the incoming msg; sigh */

msg = {msg_header_t *)buffer;

stream = NXOpenEncodePortStream{insg, seguence,
NXWrilebPortiypes (stream, "i", &errorCode):
{sellnfo encodeMethiodRet:result onto:stream];
NXCloseEncodePortStream (stream);

remoteReply (sender, msg, ({(Coammunication*)communication)-stimeoul} ;

warning (*in remoteanswer made return packet\n*);

because if we come from DPSClient,

coneunication) ;

}

static void handleRemoteTell (msg_header_t *msy, port_t sender, id communication)
const char *selName;
NXpPortStream *stream = NXOpenDecodePortStream(msg, communication};
char *args;
id self;
SElL sel;
int volatile errorCode = 0;
RemoteMethodinfo *selInfo;

warning ("in handleRemoteTell received packet\n"});
NXReadPortlypes{stream, *@%", &self, &selName);
warning ("in handleRemoteTell selName=%s\n*, selName):
sel = sel getUid ((char *) selName);

if (! sel) error{"handleRemoteTell: received message witlh unkuown sel"};

we don‘t

{

WI-Apple0004697



5,481,721
41 42

selinfo = {self remoteMethodinfo:sell;
[selinfo decodeMethodParamsFrom:strean];

args =
NxCloseDecoderortStream {stream);

if {! args) ( errorCode = -2; goto done; }
NX_DURING

objc_msgSendv (sell, sel, [selInfo sizeOfParams), args):

HNX_HANDLER
errorCode = -1;
NX_ENDHANDLER;
[ree(args):
done: - .
if (errorCode) warning("*** Error executing handleRemoteTell %d\n", erroxCode};
}

int remoteMessageReceiveCount = 0; .
static void handleRemoteMessage (msg_header_t *msg, void *userbata) {
sender = msg->msg_remote_porl;

port_t
id communication =- [Comumnicalion findComnForbort:sender];
il (1 communication} {

sysloyg (LOG_ERR, "Received message from zonbie”);

return;

}
remoteMessageReceiveCounlt++;

iE {msg->msg_id == RO_TELL_MSG_ID) {
handleRemoteTell {msg, sender, communication);

} else if (wsg->wsg_id == RO_ASK_MSG_ID) |
hiandleRemoLeAsk (msy, sender, communication);

} else
sysloy (LOG_EBRR, "Bogus reémote message");

}

#if 0 // Should work, but has never been used/tested
stalic void remotelell (port_t target, msg_header_t *msy, port_t sender, int timeout) {

int eryr, sndOptions = SEND_SWITCH:

msg->msy_remote_port = Larget;

msg->msg_local_port = sender;

msyg->msy_id = RO_TELL_MSG_ID;

if (tiweoul >= 0)

sndOptions = SEND_TIMEOUT;

err = msg_send(msg,sndOptions, timeout);

if {err) error{"remoteTell: cannot send"):
}
dendif

static void remoteReply(port_t rPort, msg_headex_t *msg, int timeout) {

int err, sndOptions = SEND_SWITCH;
msg->msy_remote_port = rPort;
msg->msg_local_port = PORT_NULL;
msg->msg_id = RO_REPLY_MSG_ID:
if {timeout >= 0)

sndOptions |= SEND_TIMEQUT;
err = msg_send{msg, sndOptions, timeout);

if {err) error(*remoteReply: cannot send”);

}

staltic nestingLevel=0;

static void remoteAsk{port_t target, msg_header_t *msg, int timeout) {

int err;
int volatile sndOptions = SEND_SWITCH:
int volaktile rcvOptions = RCV_NO_SENDERS } RCV_INTERRUPT;

msg->msg_remote_port = lLarget;

WI-Apple0004698



5,481,721
43 44

msyg ->wsy_local_porlt = replyPort:;
msyg->msg_id = RO_ASK_MSG_1ID;
if (timeout >= 0) {

sndOptions = SEND_TIMEQUT;
revOptions )= RCV_TINEOUT;

]

nestinglevels+; )

if (nestinglevel == 1 && enableProc)
(*enableProc) (replyPort, handleRemoteMessage, NO) ;

MX_DURING

err = msg_send{msg, sndOptions, Limeout) ;
if (erx} error({“remoLeAsk: cannot send");
else {
while (1) ¢
mBEg->meg_size = MSC_SIZE_MAX;
msg-smgg_local_port = replybort;
err = msg_receive(msg, rcvOptions, timeout};
if (err) {
ROLoyg{"remoteAsk: cannot receive or Limeout\n"):

NX_RAISE (TIMEOUT_REMOTE_EXCEPTION, "Cannot receive", NULL};

} else {
if (msg->msg_id == RO_REPLY_MSG_1D) {
break;
} else
handleRemoteMessage ( {(msg_header_t *)meg, NULL);
//?7? IF OUT OF LINE, DEALLOCATE HERE
}

}
}
nestingLevel--;
if (!nestingLevel && enableProc)
(*enableProc)(reply?ort,handleRemoteMessage,YES);
MNY_HANDLER
nestingbevel--;
if (inestinglevel && enableProc)
(*enable?roc)(replyPort,handleRemoteMessage,YES);
NX_RERAFSE {);
NX_ENDHANDLER;

WI-Apple0004699



5,481,721
45 46

7+ rhis module simply allows NXStrings to be passed acruss address spaces.
The principle is: to encode a NXString, make a Lemporary object holding the string, encode
its characters, free the temporary; to decode a NXString, decode the temporary object, re

place by an immutable string, free the temporary. */
#timport ~../lowlevel.subproj/NxString.h"

{import "RemoteObject.h"
timport "HXPortStream.h"

#import <string.h>
#import <stdio.h>

@interface _TemporaryStringticlder: Object (
dpublic
NXString *gtring;

}

gend

@implementation _TemporaryStringHolder

- writePortStream: (NXPortStream *)stream [
unsigyned length = [gtring length};
HMXChar *chars = malloc(length*sizeol {NXChar)):
{super wrikePortStream: stream);
|sLkring setChars:chars]:
NXWritePortTypes {stream, "“i", &length);
NXPortEncodeBytes(stream, [(char *)chars, length);
free{chars);
reLturn self;

- readrortStream: (NXPorlLStream *) stream {
unsigned lengthy
NXChar *chars;
[super readPortStream: stream];

NxReadPortitypes {stream, *i*, &length);
chars = malloc{length*sizeof (NXChar});

NXPortDecodeBytes(stream, {char *)chars, length):
string = [HXImmutableString newFor: length chars:chars];
[ree({chars);

return self;

}

- afterPortReading: (Communication *) communication {
NXString *res = string;
[self free):
return res;

}

@end

@interface NXString (NXString_RemoteObject_Coding)
_ encodeRemotelyFor: (Comnuntication *)communication freeArfterBncoding: {BOOL *}flag:

@Gand

@implementation NXString (NXString_RemoteObject_Coding)
- encodeRemotelyFor: (Communication *)communication freeAfterEncoding: (BOOL *}flag {

_"emporaryStringliolder *new = [_TemporaryStringiiolder newl:

WI-Apple0004700



5,481,721
47 48

new-s>string = self;
*flag = YES;
return new;

dend

WI-Apple0004701



5,481,721
49 50

*/

#import <objc/Object.h>
#inport <objc/hashtable.h>
fimport <sys/message.h>

extern SEl _sel_registerName(STR key):
/7727 will go away

/»wwﬁthﬁ»ﬁuﬁﬂt»wﬁh Definitions 1222032222 R R RS AL LA ARA N

typedel struct _NXPortStream {

meg_header L *msg:
//?2? DO S8IZE TEST LATER
BOOL write; /* writingy vs reading */ //REMOVE AFTER DEBUG!
id communication;
char *chars;
int nbchars;
int maxchars;
int *ints;
int nbints;
int maxints;

} NXPorLStream;

@interface Object {Communication_Calls)
- beforeEncoding: object onto: (NXPortStream *) streanm freehAfterEncoding: (BOOL *)flag:
/* will encode the returned object: if flag is set, returned object will be send ’{ree

r after eucoding */
- afterbecoding: object from: (NXPortStream *) stream;

/* will replace the decoded object by the returned object */
€end

S 22222232 R 1 itk*ﬁi*kki&**iiiﬁ***i&ﬁ
/ global operations /

extern NXPortStream *NXOpenEncodePortStream(msg_header_t *msg. int sequence, id communicat

ion);

extern NXPortStream ‘NXOpenDecodePortStream(msg_header_t *msg, id communication):

/* buffer is char[MSG_SIZE_MAX];

Lf mode is NX_WRITEONLY, creates a NXP
al stream on which to actually put the bytes. If mode is NX_READONLY, creates a NXPortStre

am, ready for reading, given a physical stream on which to actually get the bytes. The ca
1ler is responsible Lor closing physical. 1f the file format mismatches right from the st
art wilh stream format, NULL is returned, othierwise an exception might be raised.

1ff read, have buffers point to msg */

extern void NXCloseBncodePortStream(NXPortStream *gtream) ;
/* Copy buffers into message and prepare msg for msg_send;
free stream */

extern void NXCloseDecodePortstream(NXPdrtStream *gtream) ;
/* [ree stream */

extern int NXGetPortStreamSequence(NXPortStream *strean) ;

/s\v;\i*ﬁhkhiiili—**iﬁ Read/Write data EhAARAR I REFRRKARRAA S KA I AR

vaid NXPortEncodeByles (NXPortStream *stream, const char *byles, int count):

ortStream, ready for writing, given a physic

WI-Apple0004702



5,481,721
51 52

*/

Fimport <objc/Object.h>
ffimport <objc/hashtable.h>
#import <«<sys/message.h>

extern SEL _sel_registerName(STR key):
//?? will go away

/}ﬂﬁiﬂtﬁiﬁiﬁhtﬁﬁﬁﬁ Definitions i*iiﬁ*ﬁﬂt*kiii**i***i*h**i/

typedef struct _NXPortStream {

msg_header_t *msg;
//?? DO SIZE TEST LATER
BOOL- write; /* writing va reading */ / /REMOVE AFTER DEBUGH
id communication;
char *chars;
int nbchars;
int maxchare;
int *ints;
int nbints;
int maxints;

} NXPourtStream;

@interface Object (Communication_Calls)
- beloreEnceding: object onto: {NXPorLStream *) stream freeAfterEncoding: (BOOL *)flag;

/* will encode the returned object; if flag is set, returned object will be send 'free

' after encoding */
- afterDecoding: object from: (NXPortStream *) stream;

/* will replace the decoded object by the returned object */
Gend

ISR SRR EE SRR R 3 hhhkhA Rk ARA T AR KN E R A kA
/ global operations

extern NXPorlLStream *NXOpenEncodePortStream{msg_header_t *msg, int sequence, id communicat
ion}):

extern NXrorLStream *NXOpemnDecodePortStream(msg_header_t *mey, id communication) s
/* buffer is char[MSG_SIZE_MAX]: :

if mode is NX_WRITEONLY, creates a NXPortStream, ready for writing, given a physic

al stream on which to actually put the bytes. If mode is NX_READONLY, creates a NXPortStre
am, ready for reading, given a physical stream on which to actually get the bytes. The ca
ller is responsible for closing physical. If the file format mismatches right from the st
art with stream format, NULL is returned, otherwise an exception might be raised.

Iff read, bave buffers point to msg */

extern void NXCloseEncodePortStream(NXPortStream *stream);
/* Copy buffers into message and prepare msyg for msg_send;

Lree stream */

extern void NXCloseDecodePortStream(NXPortStream *stream};
/* free stream */

extern int HXGetPortStreamSequence {NXPortStream *stream):

/i*ﬁﬂ**i'!*iiiﬁﬁ*ﬁ Read/Write data **{*iQ*ﬁ*k*‘*‘*i*ﬁ**kﬁﬁﬁﬁﬁ,

vold NXportBncodeBytes (NXPortStream *stream, const char *bytes, iut count);

WI-Apple0004703



5,481,721
53 54

void NXPortDecodeBytes (NXPorLlStream *streaw, char *bytes, int count);

extern void NXWriteportTypes (NXPortStream *stream, const char *type, ...):
/* Restricted to monochar type descriptions;

Iast arguments specily addresses of val