
Exhibit 23

Apple, Inc. v. Motorola, Inc. et al Doc. 240 Att. 6

Dockets.Justia.com

http://dockets.justia.com/docket/wisconsin/wiwdc/3:2010cv00662/29072/
http://docs.justia.com/cases/federal/district-courts/wisconsin/wiwdc/3:2010cv00662/29072/240/6.html
http://dockets.justia.com/

IN THE UNITED STATES DISTRICT COURT
FOR THE WESTERN DISTRICT OF WISCONSIN

APPLE INC. and NeXT SOFTWARE INC.
(f/k/a NeXT COMPUTER, INC.),

Plaintiffs,

v.

MOTOROLA, INC. and MOTOROLA
MOBILITY, INC.

Defendants.

PLAINTIFFS’ SUPPLEMENTAL OBJECTIONS AND RESPONSES TO
DEFENDANTS’ FIRST SET OF INTERROGATORIES (NO. 6)

Pursuant to Rules 26 and 33 of the Federal Rules of Civil Procedure, Plaintiffs

Apple Inc. (“Apple”) and NeXT Software, Inc. (“NeXT”) (collectively, “Plaintiffs”)

hereby provide their first supplemental objections and responses to the first set of

interrogatories served by Defendants Motorola, Inc. and Motorola Mobility, Inc.

(collectively, “Defendants”).

GENERAL OBJECTIONS

Plaintiffs reiterate and incorporate by reference their objections to Defendants’

First Set of Interrogatories, as if specifically stated herein.

FURTHER OBJECTIONS AND RESPONSES

INTERROGATORY NO. 6

For each claim of the Apple Asserted Patents that you allege Defendants have

infringed or are infringing, describe the complete basis for your contention that

Case No. 10-CV-662 (BBC)

JURY TRIAL DEMANDED

 2

Defendants are infringing or have infringed that claim by describing in a claim chart on

an element-by-element basis where each element of each Asserted Claim can be found in

each Accused Instrumentality of Defendants that you contend infringes that claim,

whether such alleged infringement is literal or by equivalents, how 35 U.S.C. § 112(6) is

satisfied, if applicable, and whether such alleged infringement is direct (i.e., under 35

U.S.C. § 271(a)) or indirect (i.e., under 35 U.S.C. §§ 271(b) or (c)).

RESPONSE TO INTERROGATORY NO. 6

In addition to their General Objections, Plaintiffs object to this interrogatory as

vague and ambiguous, overly broad, and unduly burdensome. Plaintiffs further object to

this interrogatory to the extent that it seeks information that is (a) protected by the

attorney-client privilege or work product doctrine; (b) confidential, proprietary, or trade

secret; (c) subject to Plaintiffs’ legal or contractual obligation of nondisclosure or

confidentiality to a third party; and/or (d) public or readily available to Defendants.

Plaintiffs further object to the extent this interrogatory calls for a legal conclusion.

Plaintiffs also object to this contention interrogatory as premature because, among other

things, Defendants have not yet produced documents or information about its products

used to infringe the Apple Asserted Patents. Plaintiffs expressly reserve the right to

amend, supplement, and/or correct its response to this interrogatory as additional

information becomes available to Plaintiffs during the course of their discovery and

investigation, in response to any claim construction by the Court, or in response to

Defendants’ responses to Plaintiffs’ interrogatories (or any supplement thereto).

Subject to their General and Specific Objections, Plaintiffs respond as follows:

Plaintiffs will provide their infringement contentions by March 4, 2011 pursuant to the

 3

Court’s Preliminary Pretrial Order and will supplement those contentions as appropriate.

Plaintiffs will provide their expert reports regarding infringement of the Apple Asserted

Patents by September 2, 2011 pursuant to the Court’s Preliminary Pretrial Order and will

supplement those reports as appropriate and necessary and as permitted by the Court.

SUPPLEMENTAL RESPONSE TO INTERROGATORY NO. 6

Subject to their General and Specific Objections above, Plaintiffs hereby

incorporate by reference Plaintiffs’ Identification of Asserted Claims and Accused

Products regarding U.S. Patent Nos. 7,479,949 (“the ’949 patent”), 6,493,002 (“the ’002

patent”), 5,838,315 (“the ’315 patent”), RE 39,486 (the “RE ’486 patent”), 6,424,354

(“the ’354 patent”), 6,343,263 (“the ’263 patent”), 6,275,983 (“the ’983 patent”),

5,969,705 (“the ’705 patent”), 5,946,647 (“the ’647 patent”), 5,929,852 (“the ’852

patent”), 5,915,131 (“the ’131 patent”), 5,566,337 (“the ’337 patent”), 5,519,867 (“the

’867 patent”), 5,481,721 (“the ’721 patent”) and 5,455,599 (“the ’599 patent”), served on

March 4, 2011. In addition, based upon presently known information, Plaintiffs append

claim charts for each of the Apple Patents-in-Suit as follows:

• Ex. A: ’949 Patent, claims 1, 2, 4-6, and 9-20.
• Ex. B: ’002 Patent, claims 1, 3-7, 11, 21, 22, 26, 28-32, 36, 37, 46,

and 47.
• Ex. C: ’315 Patent, claims 1, 7, 8, and 12-14.
• Ex. D: RE ’486 Patent, claims 1-3, 6-12, 14-17, and 20.
• Ex. E: ’354 Patent, claims 1, 3, 5-8, 41, and 42.
• Ex. F: ’263 Patent, claims 1-6, 24, 25, 29, and 30.
• Ex. G: ’983 Patent, claims 1-11, 16, 17, and 22.
• Ex. H: ’705 Patent, claim 1.
• Ex. I: ’647 Patent, claims 1, 3, 4, 8, 9, 13-15, 19, 20, and 22.
• Ex. J: ’852 Patent, claims 1-3, 7-13, and 15-19.
• Ex. K: ’131 Patent, claims 1, 3, 4, 7-12, and 15-17.
• Ex. L: ’337 Patent, claims 1, 3, 6-10, 12, 14, 16-19, 21, 23, and 24.
• Ex. M: ’867 Patent, claims 1-3, 7-10, 12, 13, and 32.

 4

• Ex. N: ’721 Patent, claims 1, 3-7, 11-14, 19-22, and 24.
• Ex. O: ’599 Patent, claims 1-3, 15, 16, 18, 19, 22, and 24-26.

 Defendants infringe or have infringed these claims (collectively, “the Asserted

Claims”) by making, using, selling, offering for sale or importing at least the following

devices: Droid, Droid 2, Droid 2 Global, Droid X, Droid Pro, Cliq, Cliq XT, Cliq 2,

Charm, BackFlip, Devour, i1, Citrus, Defy, Bravo, Flipout, Flipside, Atrix 4G, and Xoom

(collectively “the Accused Products”). As described in further detail in the appended

claim charts, see Exs. A-O, each element of each of the Asserted Claims is met by the

Accused Products. Where the basis for infringement is not significantly distinct,

Plaintiffs have selected representative Accused Products as appropriate.

Defendants directly and indirectly infringe all of the Asserted Claims. Defendants

directly infringe these claims by making, using, offering for sale, or selling the Accused

Products within the United States, or by importing the Accused Products into the United

States. In addition, Defendants’ customers directly infringe the Asserted Claims by using

the Accused Products, and Defendants induce this direct infringement of the Asserted

Claims by selling the Accused Products and by providing manuals and other user guides

encouraging their customers to use the Accused Products in an infringing manner.

Defendants further contribute to this direct infringement of the Asserted Claims by

selling the Accused Products, which are specifically designed to practice the inventions

of the Asserted Claims and have no substantial non-infringing uses. Based on presently

known information, Plaintiffs contend that the Accused Products made, used, sold,

offered for sale or imported by Defendants infringe each of the Asserted Claims literally

or, in the alternative, under the doctrine of equivalents.

 5

These contentions are preliminary and based only on publicly available

information. Defendants have not yet provided discovery as to twelve of the fifteen

Apple Patents-in-Suit and Plaintiffs’ investigation of Defendants’ infringement is

ongoing. Based on discovery and Plaintiffs’ continued investigations, Plaintiffs may

identify additional claims that are infringed and additional accused products, including

products that Defendants may introduce in the future. Plaintiffs expressly reserve the

right to amend their response to this Interrogatory to include such products. Also, these

contentions are made based on information ascertained to date, and Plaintiffs expressly

reserve the right to modify or amend the contentions contained herein based on the

Court’s claim constructions or to reflect additional information that becomes available to

Plaintiffs as discovery and their investigation proceeds.

Dated: March 18, 2011 WEIL, GOTSHAL & MANGES LLP

By: /s/ Jill J. Ho

Jill J. Ho
Attorneys for Apple Inc. and
NeXT Software, Inc.

CERTIFICATE OF SERVICE

I declare that I am employed with the law firm of Weil, Gotshal & Manges
LLP, whose address is 201 Redwood Shores Parkway, Redwood Shores, California
94065-1175. I am not a party to the within cause, and I am over the age of eighteen
years. I further declare that on March 18, 2011, I served a corrected copy of:

PLAINTIFFS’ SUPPLEMENTAL OBJECTIONS AND RESPONSES TO

DEFENDANTS’ FIRST SET OF INTERROGATORIES (NO. 6)

 BY U.S. MAIL by placing a true copy thereof enclosed in a sealed
envelope with postage thereon fully prepaid, addressed as follows, for collection and
mailing in accordance with the firm’s ordinary business practices. I am readily familiar
with the practice for collection and processing of mail, and know that in the ordinary
course of business practice that the document(s) described above will be deposited with
the U.S. Postal Service on the same date as sworn to below.

 BY ELECTRONIC SERVICE by electronically mailing a true
and correct copy through the electronic mail system to the email address(es) set forth in
the service list below.

 BY OVERNIGHT DELIVERY by placing a true copy thereof
enclosed in a sealed envelope with overnight delivery fees provided for, addressed as
follows, for collection by Federal Express in accordance with ordinary business practices.
I am readily familiar with the practice for collection and processing of correspondence
for overnight delivery and know that in the ordinary course of business practice the
document(s) described above will be deposited by an employee or agent in a box or other
facility regularly maintained by Federal Express for collection on the same day that the
document(s) are deposited.

Lynn Stathas (# 1003695)
lstathas@reinhartlaw.com
REINHART BOERNER VAN DEUREN, S.C.
22 East Mifflin Street
Madison, WI 53701-2018
Phone: (608) 229-2200
Fax: (608) 229-2100

Edward J. DeFranco
eddefranco@quinnemanuel.com
51 Madison Avenue, 22nd Floor
New York, NY 10010
Telephone: (212) 849-7000
Facsimile: (212) 849-7100

Moto-Apple-745@quinnemanuel.com

Attorneys for Defendants Motorola, Inc. and
Motorola Mobility, Inc.

I declare under penalty of perjury under the laws of the United States of
America that the foregoing is true and correct. Executed on March 18, 2011, at Redwood
Shores, California.

 /s/ Jill J. Ho
Jill J. Ho

Exhibit L –U.S. Patent No. 5,566,337

 Motorola directly and/or indirectly infringes at least claims 1, 3, 6-10, 12, 14, 16-19, 21, and 23-24 of the ’337 patent, either
literally or through the doctrine of equivalents. Motorola’s infringing products include mobile devices such as smartphones and
tablet computers, including but not limited to the: Atrix, Bravo, Cliq, Cliq XT, Cliq 2, Charm, Defy, Devour, BackFlip, Devour, Droid,
Droid 2, Droid 2 Global, Droid X, Droid Pro, Droid Bionic, Flipout, Flipside, i1, Xoom, (collectively, the “ ’337 Accused Products”).

 For the purposes of this analysis, Plaintiffs will examine a representative mobile device, Motorola’s Droid X, which is shipped
operates with the Android 2.1 Platform. All other ’337 Accused Products meet the limitations of the asserted claims on the same
bases as indicated for the Droid X, unless otherwise stated.

 These infringement contentions are preliminary and based only on publicly available information as to the ’337 Accused
Products. Motorola has not yet provided discovery as to its accused products and in addition Plaintiff's investigation of Motorola's
infringement is ongoing. Based on discovery and Plaintiff's continued investigations Plaintiff reserves the right to amend these
contentions to identify additional bases for infringement and additional accused products, including products that Motorola may
introduce in the future. Accordingly, Plaintiff reserves its right to amend these contentions as discovery and its investigation
proceeds. Also, these disclosures are made based on information ascertained to date, and Plaintiff expressly reserves the right to
modify or amend the disclosures contained herein based on the Court’s claim constructions or to reflect additional information that
becomes available to Plaintiff.

U.S. Patent No. 5,566,337 Infringement Contentions

1. In a computer including at
least one event producer for
detecting that an event has
occurred in the computer and
generating an event

The ’337 Accused Products are, inter alia, computers that include at least one event producer for
detecting that an event has occurred in the computer and generating an event.

• For example, the Motorola Droid X includes a Texas Instruments OMAP3630 processor
for executing applications such as web browsers, email clients, and telephony
applications, see Exh. L-9 [Motorola Droid X Specification], and is therefore a
computer.

• For example, the ’337 Accused Products contain a Bluetooth protocol that generates an
event when the Bluetooth state changes. See Exh. L-1 [BluetoothService.java].

• For example, the Bluetooth code calls the Context.sendBroadcast() method, which
“initiates a broadcast [event] by passing an Intent object.” See Id.; Exh. L-2 [Android

2

U.S. Patent No. 5,566,337 Infringement Contentions
Dev Site, “Application Fundamentals”]. The Intent object that is passed in
Context.sendBroadcast() is an object that “defines a message and defines the action
to perform.” Id.

and at least one event consumer
which needs to be informed
when events occur in the
computer,

The ’337 Accused Products have at least one event consumer which needs to be informed when
events occur in the computer.

• For example, the ’337 Accused Products contain, inter alia, a Phone application that
needs to be informed of, e.g., changes to the Bluetooth settings. For that reason, the
Phone application registers a broadcast receiver for this event using an Android Manifest
file. “Broadcast receivers enable applications to receive intents that are broadcast by the
system or by other applications, even when other components of the application are not
running.” See Exh. L-3 [Android Dev Site, “Receiver”]; Exh. L-10
[AndroidManifest.xml].

a system for distributing events
comprising:

storing means for storing a
specific set of events of which
said at least one event consumer
is to be informed

The ’337 Accused Products have a system for distributing events comprising storing means for
storing a specific set of events of which said at least one event consumer is to be informed.

• For example, in the ’337 Accused Products, means for storing a specific set of events of
which said at least one event consumer is to be informed include the Activity Manager.

• For example, when an event consumer registers to receive an event, it calls the
registerReceiver() method, which causes the system to store a specific set of events of
which at least one event consumer is to be informed. See Exh. L-4 [Android Dev Site,
“Context”], Exh. L-5 [ActivityManagerService.java].

• For example, the Activity Manager includes a HashMap data structure named
mRegisteredReceivers which “[k]eeps track of all IIntentReceivers that have been
registered for broadcasts.” Id.

3

U.S. Patent No. 5,566,337 Infringement Contentions

event manager control means
for receiving the event from the
event producer, comparing the
received event to the stored set
of events, and distributing an
appropriate event to an
appropriate event consumer

The ’337 Accused Products have event manager control means for receiving the event from the
event producer.

• For example, in the ’337 Accused Products, means for receiving the event from the event
producer, comparing the received event to the stored set of events, and distributing an
appropriate event to an appropriate event consumer include the Activity Manager.

• For example, the ’337 Accused Products contains an Activity Manager which, inter alia,
manages events that are transmitted from event producers to event consumers. See Exh.
L-5 [ActivityManagerService.java]. The Activity Manager first receives events from the
event producer via a Context.sendBroadcast() call, which is called by event producers when
they have an event to transmit. The Context.sendBroadcast() method “broadcast[s] the
given intent to all interested BroadcastReceivers” by first sending it to the Activity
Manager. See, Exh. L-4 [Android Dev Site, “Context”].

The ’337 Accused Products have event manager control means for comparing the received event to
the stored set of events.

• For example, the Activity Manager, inter alia, compares the received event to the stored set
of events. It will determine which event consumers are interested in the current event, and
return a list of interested consumers. See Exh. L-5 [ActivityManagerService.java].

The ’337 Accused Product have event manager control means for distributing an appropriate
event to an appropriate event consumer.

• For example, after identifying an appropriate event consumer through the distributor
means (see infra), “the Android system finds the appropriate activity, service, or set of
broadcast receivers to respond to the intent, instantiating them if necessary.” See Exh.
L-6 [Android Dev Site, “Intents and Intent Filters”]. For example, the Activity Service
Manager has a processNextBroadcast() method which delivers broadcasts. See Exh. L-
5 [ActivityManagerService.java].

distributor means for receiving
the event from the control
means and directing said control
means to distribute an

The ’337 Accused Products have distributor means for receiving the event from the control
means and directing said control means to distribute an appropriate event to an appropriate event
consumer.

4

U.S. Patent No. 5,566,337 Infringement Contentions
appropriate event to an
appropriate event consumer

• For example, in the ’337 Accused Products, means for receiving the event from the control
means and directing said control means to distribute an appropriate event to an appropriate
event consumer include the Activity Manager.

• For example, the ’337 Accused Products utilize a permissions system which can be used to
direct the control means to distribute an appropriate event to an appropriate event
consumer:

“Using Permissions

A basic Android application has no permissions associated with it, meaning it can
not do anything that would adversely impact the user experience or any data on the
device. To make use of protected features of the device, you must include in your
AndroidManifest.xml one or more <uses-permission> tags declaring the
permissions that your application needs.” See Exh. L-7 [Android Dev Site,
“Security and Permissions”].

• For example, either the event producer or the event consumer can use permissions to
determine what events are appropriate for an event consumer to receive:

“Permissions
Access permissions can be enforced by either the sender or receiver of an Intent.

To enforce a permission when sending, you supply a non-null permission argument
to

sendBroadcast(Intent, String) or sendOrderedBroadcast(Intent, String,
BroadcastReceiver, android.os.Handler, int, String, Bundle). Only receivers
who have been granted this permission (by requesting it with the <uses-
permission> tag in their AndroidManifest.xml) will be able to receive the
broadcast.

To enforce a permission when receiving, you supply a non-null permission when
registering your receiver -- either when calling
registerReceiver(BroadcastReceiver, IntentFilter, String, android.os.Handler) or
in the static <receiver> tag in your AndroidManifest.xml. Only broadcasters who
have been granted this permission (by requesting it with the <uses-permission>

5

U.S. Patent No. 5,566,337 Infringement Contentions
tag in their AndroidManifest.xml) will be able to send an Intent to the receiver.”
See Exh. L-8 [Android Dev Site, “Broadcast Receiver”].

• For example, the distributor means can receive the event from the event control means
and then can check that a target event consumer has the required permissions to view the
broadcast. The distributor means then may return a value to the event control means
directing it to either distribute or not distribute the event to a specific event consumer.
See Exh. L-5 [ActivityManagerService.java].

• For example, the ActivityManager has methods for delivery, including
processingNextBroadcast() and broadcastIntent(); for confirming permissions,
including checkComponentPermission(); and a “[r]esolver for broadcast intents to
registered receivers,” such as mReceiverResolver. See Exh. L-5
[ActivityManagerService.java].

3. The system according to
claim 1, wherein a plurality of
event consumers are included in
the computer and the plurality
of consumers comprise:
broadcast consumers having no
relationship with other
consumers, the broadcast
consumers operating
independently of other
consumers and of the order in
which consumers are informed
of the event; and

The ’337 Accused Products have a plurality of event consumers comprising broadcast
consumers having no relationship with other consumers, the broadcast consumers operating
independently of other consumers and of the order in which consumers are informed of the
event.

• For example, “[n]ormal broadcasts (sent with Context.sendBroadcast) are completely
asynchronous. All receivers of the broadcast are run in an undefined order, often at the
same time.” See Exh. L-8 [Android Dev Site, “BroadcastReceiver”], Exh. L-4
[Android Dev Site, “Context”].

sequential consumers having
relationships with other
consumers, the sequential
consumers requiring that no
other consumer be told about an

The ’337 Accused Products have sequential consumers having relationships with other
consumers, the sequential consumers requiring that no other consumer be told about an event
while they themselves are processing the event and having an ability to influence when they
receive the event relative to the other consumers.

• For example, “[o]rdered broadcasts (sent with Context.sendOrderedBroadcast) are

6

U.S. Patent No. 5,566,337 Infringement Contentions
event while they themselves are
processing the event and having
an ability to influence when
they receive the event relative to
the other consumers.

delivered to one receiver at a time. As each receiver executes in turn, it can propagate a
result to the next receiver, or it can completely abort the broadcast so that it won't be
passed to other receivers. The order receivers run in can be controlled with the
android:priority attribute of the matching intent-filter.” See Exh. L-8 [Android Dev
Site, “BroadcastReceiver”].

6. The system according to
claim 3, wherein said storing
means comprises:

a subscription matrix for storing
subscriptions to events in which
the broadcast consumers are
interested; and

The ’337 Accused Products have storing means which comprises a subscription matrix for
storing subscriptions to events in which the broadcast consumers are interested.

• For example, in the ’337 Accused Products, storing means which comprises a
subscription matrix for storing subscriptions to events in which the broadcast consumers
are interested include the Activity Manager.

• For example, when an event consumer registers to receive an event, it calls the
registerReceiver() method, which causes the system to store events in which the
broadcast consumers are interested. See Exh. L-4 [Android Dev Site, “Context”], Exh.
L-5 [ActivityManagerService.java].

• For example, the Activity Manager includes a HashMap data structure named
mRegisteredReceivers which “[k]eeps track of all IIntentReceivers that have been
registered for broadcasts.” See Exh. L-5 [ActivityManagerService.java].

a sequential consumer database
for storing entries to events in
which the sequential consumers
are interested.

The ’337 Accused Products have storing means which comprises a sequential consumer
database for storing entries to events in which the sequential consumers are interested.

• For example, in the ’337 Accused Products, storing means which comprises a sequential
consumer database for storing entries to events in which the sequential consumers are
interested include the Activity Manager.

• For example, ordered broadcasts are stored by the Activity Manager in the
mOrderedBroadcasts ArrayList. See Exh. L-5 [ActivityManagerService.java].
“Ordered broadcasts (sent with Context.sendOrderedBroadcast) are delivered to one

7

U.S. Patent No. 5,566,337 Infringement Contentions
receiver at a time. As each receiver executes in turn, it can propagate a result to the next
receiver, or it can completely abort the broadcast so that it won’t be passed to other
receivers. The order receivers run in can be controlled with the android:priority attribute
of the matching intent-filter.” See Exh. L-8 [Android Dev Site, “BroadcastReceiver”].

7. The system according to
claim 3, wherein said storing
means comprises an event
queue corresponding to each of
the broadcast consumers for
receiving distributed events
from said control means and for
storing the distributed events
until the events are consumed
by the corresponding broadcast
consumer.

The ’337 Accused Products have storing means which comprises an event queue corresponding
to each of the broadcast consumers for receiving distributed events from said control means and
for storing the distributed events until the events are consumed by the corresponding broadcast
consumer.

• For example, in the ’337 Accused Products, storing means which comprises an event
queue corresponding to each of the broadcast consumers for receiving distributed events
from said control means and for storing the distributed events until the events are
consumed by the corresponding broadcast consumer include the Activity Manager.

• For example, in the ’337 Accused Products, Normal Broadcasts are stored by the
Activity Manager in the mParallelBroadcasts ArrayList. See Exh. L-5
[ActivityManagerService.java].

8. The system according to
claim 3, wherein said control
means comprises means for
passing an event to the
sequential consumers in
succession in accordance with
the entries in the sequential
consumer database.

The ’337 Accused Products have control means comprising means for passing an event to the
sequential consumers in succession in accordance with the entries in the sequential consumer
database.

• For example, in the ’337 Accused Products, means for passing an event to the sequential
consumers in succession in accordance with the entries in the sequential consumer
database include the ordered broadcast API.

• For example, “[o]rdered broadcasts (sent with Context.sendOrderedBroadcast) are
delivered to one receiver at a time. As each receiver executes in turn, it can propagate a
result to the next receiver, or it can completely abort the broadcast so that it won't be
passed to other receivers. The order receivers run in can be controlled with the
android:priority attribute of the matching intent-filter.” See Exh. L-8 [Android Dev
Site, “BroadcastReceiver”].

9. The system according to The ’337 Accused Products have a means for prohibiting passing of an event receiving an event

8

U.S. Patent No. 5,566,337 Infringement Contentions
claim 8, wherein said control
means comprises means for
prohibiting passing of an event
upon receiving an event handled
message from a sequential
consumer.

handled message from a sequential consumer.

• For example, in the ’337 Accused Products, means for prohibiting the passing of an event
receiving an event handled message from a sequential consumer include the abort API
provided by broadcast receivers.

• For example, “[o]rdered broadcasts (sent with Context.sendOrderedBroadcast) are
delivered to one receiver at a time. As each receiver executes in turn, it can propagate a
result to the next receiver, or it can completely abort the broadcast so that it won't be
passed to other receivers. The order receivers run in can be controlled with the
android:priority attribute of the matching intent-filter.” See Exh. L-8 [Android Dev
Site, “BroadcastReceiver”].

10. A computer system
comprising: event producers for
detecting than an event has
occurred in the computer,
generating an event, and
generating a description of the
event;

The ’337 Accused Products are computers comprising event producers for detecting than an
event has occurred in the computer, generating an event, and generating a description of the
event.

• For example, the Motorola Droid X includes a Texas Instruments OMAP3630 processor
for executing applications such as web browsers, email clients, and telephony
applications, see Exh. L-9 [Motorola Droid X Specification], and is therefore a computer
system.

• For example, the ’337 Accused Products contain a Bluetooth protocol that generates an
event when the Bluetooth state changes. See Exh. L-1 [BluetoothService.java].

• For example, the Bluetooth code calls the Context.sendBroadcast() method, which
“initiates a broadcast [event] by passing an Intent object.” See Id.; Exh. L-2 [Android
Dev Site, “Application Fundamentals”]. The Intent object that is passed in
Context.sendBroadcast() is an object that “holds the content of the message... and names
the action being announced.” Id.

event consumers which need to
be informed when events occur
in the computer, said event
consumers comprising a first
and a second class of

The ’337 Accused Products have event consumers which need to be informed when events occur
in the computer, said event consumers comprising a first and second class of consumers.

• For example, the ’337 Accused Products contain, inter alia, a Phone application that
needs to be notified of, e.g., changes to the Bluetooth settings. For that reason, the Phone

9

U.S. Patent No. 5,566,337 Infringement Contentions
consumers; application registers a broadcast receiver for this event using a Android Manifest file.

“Broadcast receivers enable applications to receive intents that are broadcast by the
system or by other applications, even when other components of the application are not
running.” See Exh.L-3 [Android Dev Site, “Receiver”]; Exh. L-10
[AndroidManifest.xml] .

storing means for storing a
specific set of events of which
the event consumers are to be
informed;

The ’337 Accused Products have storing means for storing a specific set of events of which
event consumers are to be informed.

• For example, in the ’337 Accused Products, means for storing a specific set of events of
which the event consumers are to be informed include the Activity Manager.

• For example, when an event consumer registers to receive an event, it calls the
registerReceiver() method, which causes the system to store a specific set of events of
which at least one event consumer is to be informed. See, Exh. L-4 [Android Dev Site,
“Context”], Exh. L-5 [ActivityManagerService.java].

• For example, the Activity Manager includes a HashMap data structure named
mRegisteredReceivers which “[k]eeps track of all IIntentReceivers that have been
registered for broadcasts.” See Exh. L-5 [ActivityManagerService.java].

event manager control means
for receiving the event from the
event producers and comparing
the received event to the stored
set of events;

The ’337 Accused Products have an event manager control means that receives the event from
the event producer and compares the received event to the stored set of events.

• For example, in the ’337 Accused Products, means for receiving the event from the
event producers and comparing the received event to the stored set of events is the
Activity Manager.

• For example, the ’337 Accused Products contains an Activity Manager which, inter
alia, manages events that are transmitted from event producers to event consumers.
See Exh. L-5 [ActivityManagerService.java]. The Activity Manager first receives
events from the event producer via a Context.sendBroadcast() call, which is called by
event producers when they have an event to transmit. The Context.sendBroadcast()
method “broadcast[s] the given intent to all interested BroadcastReceivers” by first
sending it to the Activity Manager. See, Exh. L-4 [Android Dev Site, “Context”].

10

U.S. Patent No. 5,566,337 Infringement Contentions
The ’337 Accused Product event manager control means then compares the information in the
event to a stored set of events.

• For example, the Activity Manager, inter alia, compares the received event to the stored
set of events. It will determine which event consumers are interested in the current event,
and return a list of interested consumers. See Exh. L-5 [ActivityManagerService.java].

distributor means, responsive to
said event control means, for
deciding if an event should be
passed to an event consumer;

The ’337 Accused Products have distributor means responsive to said control means, for
deciding if an event should be passed to an event consumer.

• For example, in the ’337 Accused Products, means, responsive to said event control
means, for deciding if an event should be passed to an event consumer include the
Activity Manager.

• For example, the Android devices utilize a permissions system which can be used to
direct the control means to distribute an appropriate event to an appropriate event
consumer:

“Using Permissions

A basic Android application has no permissions associated with it, meaning it
can not do anything that would adversely impact the user experience or any data
on the device. To make use of protected features of the device, you must include
in your AndroidManifest.xml one or more <uses-permission> tags declaring the
permissions that your application needs.” See Exh. L-7 [Android Dev Site,
“Security and Permissions”].

• For example, either the event producer or the event consumer can use permissions
to determine what events are appropriate for an event consumer to receive:

“Permissions
Access permissions can be enforced by either the sender or receiver of an Intent.

To enforce a permission when sending, you supply a non-null permission argument
to sendBroadcast(Intent, String) or sendOrderedBroadcast(Intent, String,
BroadcastReceiver, android.os.Handler, int, String, Bundle). Only receivers who
have been granted this permission (by requesting it with the <uses-permission> tag

11

U.S. Patent No. 5,566,337 Infringement Contentions
in their AndroidManifest.xml) will be able to receive the broadcast.

To enforce a permission when receiving, you supply a non-null permission when
registering your receiver -- either when calling
registerReceiver(BroadcastReceiver, IntentFilter, String, android.os.Handler) or
in the static <receiver> tag in your AndroidManifest.xml. Only broadcasters who
have been granted this peimission (by requesting it with the <uses-permission>
tag in their AndroidManifest.xml) will be able to send an Intent to the receiver.”
See Exh. L-8 [Android Dev Site, “Broadcast Receiver”].

• For example, the distributor means can receive the event from the event control means and
then can check that a target event consumer has the required permissions to view the
broadcast. The distributor means then may return a value to the event control means
directing it to either distribute or not distribute the event to a specific event consumer.
See Exh. L-5 [ActivityManagerService.java].

• For example, the ActivityManager has methods for delivery, including
processingNextBroadcast() and broadcastIntent(); for confirming permissions, including
checkComponentPermission(); and a “[r]esolver for broadcast intents to registered
receivers,” such as mReceiverResolver. See Exh. L-5 [ActivityManagerService.java].

said event manager control
means comprising:

first means for sending an
event to appropriate event
consumers of a first class in
accordance with the stored set
of events; and

The ’337 Accused Products have an event manager control means which comprises a first means
for sending an event to appropriate event consumers of a first class in accordance with the stored
set of events.

• For example, in the ’337 Accused Products, means for sending an event to
appropriate event consumers of a first class in accordance with the stored set of
events include the Activity Manager.

• For example, after the Android’s event manager control means will distribute an
event to appropriate sequential event consumers in accordance with the stored set of
events and then “finds the appropriate activity, service, or set of broadcast receivers
to respond to the intent, instantiating them if necessary.” See Exh. L-6 [Android

12

U.S. Patent No. 5,566,337 Infringement Contentions
Dev Site, “Intents and Intent Filters”].

• For example, the ActivityManager has methods for delivery, including
processingNextBroadcast() and broadcastIntent(); for confirming permissions,
including checkComponentPermission(); and a “[r]esolver for broadcast intents to
registered receivers,” such as mReceiverResolver. See Exh. L-5
[ActivityManagerService.java].

second means for sending the
event to appropriate event
consumers of a second class
responsive to said distributor
means.

The ’337 Accused Products have an event manager control means which comprises a second
means for sending an event to appropriate event consumers of a second class responsive to said
distributor means.

• For example, in the ’337 Accused Products, means for sending the event to
appropriate event consumers of a second class responsive to said distributor means
include the Activity Manager.

• For example, the ’337 Accused Product utilize a permissions system which can be used
to direct the control means to distribute an appropriate event to an appropriate event
consumer:

“Using Permissions

A basic Android application has no permissions associated with it, meaning it
can not do anything that would adversely impact the user experience or any
data on the device. To make use of protected features of the device, you must
include in your AndroidManifest.xml one or more <uses-permission> tags
declaring the permissions that your application needs.” See Exh. L-7
[Android Dev Site, “Security and Permissions”].

• For example, either the event producer or the event consumer can use permissions to
determine what events are appropriate for an event consumer to receive:

“Permissions
Access permissions can be enforced by either the sender or receiver of an Intent.

To enforce a permission when sending, you supply a non-null permission argument
to sendBroadcast(Intent, String) or sendOrderedBroadcast(Intent, String,

13

U.S. Patent No. 5,566,337 Infringement Contentions
BroadcastReceiver, android.os.Handler, int, String, Bundle). Only receivers who
have been granted this permission (by requesting it with the <uses-permission> tag
in their AndroidManifest.xml) will be able to receive the broadcast.

To enforce a permission when receiving, you supply a non-null permission when
registering your receiver -- either when calling
registerReceiver(BroadcastReceiver, IntentFilter, String, android.os.Handler) or
in the static <receiver> tag in your AndroidManifest.xml. Only broadcasters who
have been granted this permission (by requesting it with the <uses-permission>
tag in their AndroidManifest.xml) will be able to send an Intent to the receiver.”
See Exh. L-8 [Android Dev Site, “Broadcast Receiver”].

• For example, the distributor means can receive the event from the event control means and
then can check that a target event consumer has the required permissions to view the
broadcast. The distributor means then may return a value to the event control means
directing it to either distribute or not distribute the event to a specific event consumer. See
Exh. L-5 [ActivityManagerService.java].

12. The system according to
claim 10, wherein

said first class of consumers
comprise sequential consumers
having relationships with other
consumers, the sequential
consumers requiring that no
other consumer be told about an
event while they themselves are
processing it, and having an
ability to influence when they
receive the event relative to the
other consumers; and

The ’337 Accused Products have a first class of consumers which comprise sequential
consumers having relationships with other consumers, the sequential consumers requiring that
no other consumer be told about an event while they themselves are processing it, and having an
ability to influence when they receive the event relative to the other consumers.

• For example, “[o]rdered broadcasts (sent with Context.sendOrderedBroadcast) are
delivered to one receiver at a time. As each receiver executes in turn, it can propagate a
result to the next receiver, or it can completely abort the broadcast so that it won't be passed
to other receivers. The order receivers run in can be controlled with the android:priority
attribute of the matching intent-filter.” See Exh. L-8 [Android Dev Site,
“BroadcastReceiver”].

said second class of consumers The ’337 Accused Products have a second class of consumers which comprise broadcast

14

U.S. Patent No. 5,566,337 Infringement Contentions
comprise broadcast consumers
having no relationship with
other consumers, the broadcast
consumers operating
independently of other
consumers and of the order in
which consumers are informed
of the event.

consumers having no relationship with other consumers, the broadcast consumers operating
independently of other consumers and of the order in which consumers are informed of the
event.

• For example, the ’337 Accused Products contains an Activity Manager which, inter alia,
manages events that are transmitted from event producers to event consumers. See Exh.
L-5 [ActivityManagerService.java]. The Activity Manager first receives events from the
event producer via a Context.sendBroadcast() call, which is called by event producers
when they have an event to transmit. The Context.sendBroadcast() method “broadcast[s]
the given intent to all interested BroadcastReceivers” by first sending it to the Activity
Manager. See, Exh. L-4 [Android Dev Site, “Context”].

14. The system according to
claim 12, wherein said storing
means comprises:

a subscription matrix for storing
subscriptions to events in which
the broadcast consumers are
interested; and

The ’337 Accused Products have storing means which comprises a subscription matrix for
storing subscriptions to events in which the broadcast consumers are interested.

• For example, in the ’337 Accused Products, storing means which comprise a subscription
matrix for storing subscriptions to events in which the broadcast consumers are interested
include the Activity Manager.

• For example, when an event consumer registers to receive an event, it calls the
registerReceiver() method, which causes the system to store a specific set of events of
which at least one event consumer is to be informed. See Exh. L-4 [Android Dev Site,
“Context”], Exh. L-5 [ActivityManagerService.java].

• For example, the Activity Manager includes a HashMap data structure named
mRegisteredReceivers which “[k]eeps track of all IIntentReceivers that have been
registered for broadcasts.” See Exh. L-5 [ActivityManagerService.java].

a sequential consumer database
for storing entries to events in
which the sequential consumers

The ’337 Accused Products have storing means which comprises a sequential consumer
database for storing entries to events in which the sequential consumers are interested.

• For example, in the ’337 Accused Products, storing means which comprise a sequential

15

U.S. Patent No. 5,566,337 Infringement Contentions
are interested. consumer database for storing entries to events in which the sequential consumers are

interested include the Activity Manager.

• For example, “[o]rdered broadcasts (sent with Context.sendOrderedBroadcast) are
delivered to one receiver at a time. As each receiver executes in turn, it can propagate a
result to the next receiver, or it can completely abort the broadcast so that it won't be
passed to other receivers. The order receivers run in can be controlled with the
android:priority attribute of the matching intent-filter.” See Exh. L-8 [Android Dev
Site, “BroadcastReceiver”].

• For example, the Activity Manager includes a HashMap data structure named
mRegisteredReceivers which “[k]eeps track of all IIntentReceivers that have been
registered for broadcasts.” See Exh. L-5 [ActivityManagerService.java.]

16. The system according to
claim 12, wherein said control
means comprises means for
passing an event to the
sequential consumers in
succession in accordance with
the entries in a sequential
consumer database.

The ’337 Accused Products have control means which comprises means for passing an event to the
sequential consumers in succession in accordance with the entries in a sequential consumer
database.

• For example, in the ’337 Accused Products, control means which comprises means for
passing an event to the sequential consumers in succession in accordance with the entries
in a sequential consumer database include the Context.sendOrderedBroadcast() method.

• For example, “[o]rdered broadcasts (sent with Context.sendOrderedBroadcast) are
delivered to one receiver at a time. As each receiver executes in turn, it can propagate a
result to the next receiver, or it can completely abort the broadcast so that it won't be passed
to other receivers. The order receivers run in can be controlled with the android:priority
attribute of the matching intent-filter.” See Exh. L-8 [Android Dev Site,
“BroadcastReceiver”].

• For example, the ActivityManager has methods for delivery, including
processingNextBroadcast() and broadcastIntent(); for confirming permissions, including
checkComponentPermission(); and a “[r]esolver for broadcast intents to registered
receivers,” such as mReceiverResolver. See Exh. L-5 [ActivityManagerService.java].

17. The system according to
claim 16, wherein said control

The ’337 Accused Products have control means which comprises means for prohibiting passing

16

U.S. Patent No. 5,566,337 Infringement Contentions
means comprises means for
prohibiting passing of an event
upon receiving an event handled
message from a sequential
consumer.

of an event upon receiving an event handled message from a sequential consumer.

• For example, in the ’337 Accused Products, control means which comprises means for
prohibiting passing of an event upon receiving an event handled message from a
sequential consumer include the abort API provided by broadcast receivers.

• For example, “[o]rdered broadcasts (sent with Context.sendOrderedBroadcast) are
delivered to one receiver at a time. As each receiver executes in turn, it can propagate a
result to the next receiver, or it can completely abort the broadcast so that it won't be passed
to other receivers. The order receivers run in can be controlled with the android:priority
attribute of the matching intent-filter.” See Exh. L-8 [Android Dev Site,
“BroadcastReceiver”].

• For example, the ActivityManager has methods for delivery, including
processingNextBroadcast() and broadcastIntent(); for confirming permissions, including
checkComponentPermission(); and a “[r]esolver for broadcast intents to registered
receivers,” such as mReceiverResolver. See Exh. L-5 [ActivityManagerService.java].

18. A method for distributing
events occurring in a computer,
said method comprising the
steps of: determining that an
event has been detected by an
event producer in the computer;

The ’337 Accused Products perform a method for distributing events occurring in a computer
by, first, determining that an event has been detected by an event producer in the computer.

• For example, the Motorola Droid X includes a Texas Instruments OMAP3630 processor
for executing applications such as web browsers, email clients, and telephony
applications, see Exh. L-9 [Motorola Droid X Specification], and is therefore a
computer.

• For example, the Bluetooth code calls the Context.sendBroadcast() method, which
“initiates a broadcast [event] by passing an Intent object.” See Exh. L-1
[BluetoothService.java]; Exh. L-2 [Android Dev Site, “Application Fundamentals”]. The
Intent object that is passed in Context.sendBroadcast() is an object that “holds the
content of the message... and names the action being announced.” Id.

storing, in a storing means, a
specific set of events of which
an event consumer is to be

The ’337 Accused Products perform the step of storing, in a storing means, a specific set of
events of which an event consumer is to be informed.

• For example, in the ’337 Accused Products, storing means include the Activity

17

U.S. Patent No. 5,566,337 Infringement Contentions
informed; Manager.

• For example, when an event consumer registers to receive an event, it calls the
registerReceiver() method, which causes the system to store a specific set of events of
which at least one event consumer is to be informed. See, Exh. L-4 [Android Dev Site,
“Context”], Exh. L-5 [ActivityManagerService.java].

• For example, the Activity Manager includes a HashMap data structure named
mRegisteredReceivers which “[k]eeps track of all IIntentReceivers that have been
registered for broadcasts.” See Exh. L-5 [ActivityManagerService.java].

receiving the event in an event
control means from the event
producer;

The ’337 Accused Products perform the step of receiving the event in an event control means
from the event producer.

• For example, in the ’337 Accused Products, event control means includes the Activity
Manager.

• For example, the ’337 Accused Products contains an Activity Manager which, inter
alia, manages events that are transmitted from event producers to event consumers.
See L-5 [ActivityManagerService.java]. The Activity Manager first receives events
from the event producer via a Context.sendBroadcast() call, which is called by event
producers when they have an event to transmit. The Context.sendBroadcast() method
“broadcast[s] the given intent to all interested BroadcastReceivers” by first sending it
to the Activity Manager. See, Exh. L-4 [Android Dev Site, “Context”].

comparing the received event to
the stored sets of events;

The ’337 Accused Product perform the step of comparing the received event to a stored set of
events.

• For example, the Activity Manager, inter alia, compares the received event to the stored
set of events. It will determine which event consumers are interested in the current event,
and return a list of interested consumers. See L-5 [ActivityManagerService.java].

receiving the event in a
distributor means from the
control means;

The ’337 Accused Products perform the step of receiving the event in a distributor means from
the control means.

• For example, in the ’337 Accused Products, distributor means include the Activity

18

U.S. Patent No. 5,566,337 Infringement Contentions
Manager.

• For example, the distributor means receives the event in the form of a
BroadcastRecord (which contains, inter alia, the Intent object described supra) from
the event control means. See Exh. L-5 [ActivityManagerService.java].

directing the control means to
distribute an appropriate event
to an appropriate event
consumer; and

The ’337 Accused Products perform the step of directing the control means to distribute an
appropriate event to an appropriate event consumer.

• For example, the distributor means can receive the event from the event control means and
then can check that a target event consumer has the required permissions to view the
broadcast. The distributor means then may return a value to the event control means
directing it to either distribute or not distribute the event to a specific event consumer. See
Exh. L-5 [ActivityManagerService.java].

distributing, via the control
means, an appropriate event
to an appropriate event
consumer.

The ’337 Accused Products perform the step of distributing, via the control means, an
appropriate event to an appropriate event consumer.

• The ’337 Accused Product event manager control means then distributes an appropriate
event to an appropriate event consumer. For example, after identifying an appropriate event
consumer through the distributor means (see infra), “the Android system finds the
appropriate activity, service, or set of broadcast receivers to respond to the intent,
instantiating them if necessary.” See Exh. L-6 [Android Dev Site, “Intents and Intent
Filters”].

• For example, the ActivityManager has methods for delivery, including
processingNextBroadcast() and broadcastIntent(); for confirming permissions, including
checkComponentPermission(); and a “[r]esolver for broadcast intents to registered
receivers,” such as mReceiverResolver. See Exh. L-5 [ActivityManagerService.java].

19. The method according to
claim 18, wherein the event
consumer comprises a plurality
of consumers including
broadcast consumers which

The ’337 Accused Products have an event consumer which comprises a plurality of consumers
including broadcast consumers which operate independently from one another and of the order
in which consumers are informed of events and sequential consumers which require that no
other consumer be told about an event while they themselves are processing it and have an
ability to influence when they receive the event relative to the other consumers.

19

U.S. Patent No. 5,566,337 Infringement Contentions
operate independently from one
another and of the order in
which consumers are informed
of events and sequential
consumers which require that no
other consumer be told about an
event while they themselves are
processing it and have an ability
to influence when they receive
the event relative to the other
consumers.

• For example, “[o]rdered broadcasts (sent with Context.sendOrderedBroadcast) are
delivered to one receiver at a time. As each receiver executes in turn, it can propagate a
result to the next receiver, or it can completely abort the broadcast so that it won’t be
passed to other receivers. The order receivers run in can be controlled with the
android:priority attribute of the matching intent-filter.” See Exh. L-8 [Android Dev
Site, “BroadcastReceiver”].

21. The method according to
claim 19, wherein said step of
storing comprises the steps of:

storing, in a subscription matrix,
subscriptions to events in which
the broadcast consumers am
interested; and

The ’337 Accused Products perform the step of storing, in a subscription matrix, subscriptions
to events in which the broadcast consumers am interested.

• For example, the ’337 Accused Products contains an Activity Manager which, inter alia,
manages events that are transmitted from event producers to event consumers. See Exh.
L-5 [ActivityManagerService.java]. The Activity Manager first receives events from the
event producer via a Context.sendBroadcast() call, which is called by event producers when
they have an event to transmit. The Context.sendBroadcast() method “broadcast[s] the
given intent to all interested BroadcastReceivers” by first sending it to the Activity
Manager. See, Exh. L-4 [Android Dev Site, “Context”].

• For example, the Activity Manager includes a HashMap data structure named
mRegisteredReceivers which “[k]eeps track of all IIntentReceivers that have been
registered for broadcasts.” See Exh. L-5 [ActivityManagerService.java.

storing, in a sequential
consumer database, entries to
events in which the sequential

The ’337 Accused Products perform the step of storing, in a sequential consumer database,
entries to events in which the sequential consumers are interested.

• For example, the ’337 Accused Products contains an Activity Manager which, inter

20

U.S. Patent No. 5,566,337 Infringement Contentions
consumers are interested. alia, manages events that are transmitted from event producers to event consumers.

See Exh. L-5 [ActivityManagerService.java]. The Activity Manager first receives
events from the event producer via a Context.sendOrderedBroadcast() call. See Exh.
L-8 [Android Dev Site, “BroadcastReceiver”].

• For example, the Activity Manager includes a HashMap data structure named
mRegisteredReceivers which “[k]eeps track of all IIntentReceivers that have been
registered for broadcasts.” See Exh. L-5 [ActivityManagerService.java].

23. The method according to
claim 19, wherein the step of
distributing comprises the step
of passing an event to the
sequential consumers in
succession upon receiving a
continue message from a
sequential consumer indicating
that it has completed
processing of the event.

The ’337 Accused Products perform the step of distributing, which comprises the step of
passing an event to the sequential consumers in succession upon receiving a continue message
from a sequential consumer indicating that it has completed processing of the event.

• For example, a sequential consumer can send a continue message by returning a non-
null value with the BroadcastReceiver.SetResultData() method. See Exh. L-8
[Android Dev Site, “BroadcastReceiver”], Exh. L-11 [Android Dev Blog, “Processing
Ordered Broadcasts”].

24. The method according to
claim 23, wherein the step of
distributing further comprises
the step of prohibiting passing
of an event upon receiving an
event handled message from a
sequential consumer.

The ’337 Accused Products perform the step of distributing, which further comprises the step
of prohibiting passing of an event upon receiving an event handled message from a sequential
consumer.

• For example, “[o]rdered broadcasts (sent with Context.sendOrderedBroadcast) are
delivered to one receiver at a time. As each receiver executes in turn, it can propagate a
result to the next receiver, or it can completely abort the broadcast so that it won't be
passed to other receivers. The order receivers run in can be controlled with the
android:priority attribute of the matching intent-filter.” See Exh. L-8 [Android Dev
Site, “BroadcastReceiver”].

