
Exhibit 35

Apple, Inc. v. Motorola, Inc. et al Doc. 242 Att. 4

Dockets.Justia.com

http://dockets.justia.com/docket/wisconsin/wiwdc/3:2010cv00662/29072/
http://docs.justia.com/cases/federal/district-courts/wisconsin/wiwdc/3:2010cv00662/29072/242/4.html
http://dockets.justia.com/

1

Exhibit G – U.S. Patent No. 6,275,983

 Motorola directly and/or indirectly infringes at least claims 1, 7, 16, and 22 of the ’983 patent, either literally or through the
doctrine of equivalents. Motorola’s infringing products include mobile devices such as smartphones and tablet computers, including
but not limited to the: Atrix, Bravo, Cliq, Cliq XT, Cliq 2, Charm, Defy, Devour, BackFlip, Devour, Droid, Droid 2, Droid 2 Global,
Droid X, Droid Pro, Flipout, Flipside, i1, Xoom, (collectively, “the ’983 Accused Products”).1

 For the purposes of this analysis, Plaintiffs will examine a representative mobile device, Motorola’s Droid X, which is shipped
operates with the Android 2.1 Platform. All other ’983 Accused Products meet the limitations of the asserted claims on the same
bases as indicated for the Droid X, unless otherwise stated.

 In addition to Motorola’s direct infringement of the claims of the ’983 patent through its development, testing, manufacture
and use of its devices, Motorola also indirectly infringes claims 7 and 16 of the ’983 patent. Manufacturers, retailers, distributors,
end-users and others in the distribution channel of the ’983 Accused Products directly infringe these claims by using, selling, offering
for sale, and/or importing these devices into the United States. Motorola contributes to and induces the infringement of asserted
claims 7 and 16 through its promotion and provision of intentional marketing, sale and/or technical support of the ’983 Accused
Products and associated specialized components in the United States, and through the intentional design, marketing, manufacture, sale,
and/or technical support of the ’983 Accused Products abroad to induce direct infringement in the United States. Motorola supplies
’983 Accused Products and actively encourages the use, sale, offer for sale, and importation of the same in the United States through
the promotion and provision of marketing literature and user guides, which induces and results in direct infringement. See, e.g.,
Motorola Droid X User Guide (WI-Apple0034078-34145). Upon information and belief, Motorola has known or should have known
that these actions would cause direct infringement of the ’983 patent and did so with specific intent to encourage direct infringement.
Additionally, the ’983 Accused Products have no substantial non-infringing uses.

 These infringement contentions are preliminary and based only on publicly available information as to the ’983 Accused
Products. Motorola has not yet provided discovery as to its accused products and in addition Plaintiff's investigation of Motorola's
infringement is ongoing. Based on discovery and Plaintiff's continued investigations Plaintiff reserves the right to amend these
contentions to identify additional bases for infringement and additional accused products, including products that Motorola may
introduce in the future. Accordingly, Plaintiff reserves its right to amend these contentions as discovery and its investigation
proceeds. Also, these disclosures are made based on information ascertained to date, and Plaintiff expressly reserves the right to

1 Motorola has announced additional smartphones including XRT and Titanium which may also infringe the ’983 Patent.
Apple reserves the right to supplement this analysis and this list of accused products as discovery into these newly announced products
progresses.

2

modify or amend the disclosures contained herein based on the Court’s claim constructions or to reflect additional information that
becomes available to Plaintiff.

U.S. Patent No. 6,275,983 Infringement Contentions

1. A computer system,
comprising:

The ’983 Accused Products have a processor and are capable of executing numerous computer
applications and are, accordingly, computer systems.

• For example, the Motorola Droid X includes a Texas Instruments OMAP3630
processor and is capable of executing applications such as a web browser, email client,
or telephone dialing application. See, e.g., Exh. G-1 [Motorola Droid X
Specification].

computer hardware for
performing native system
services

The ’983 Accused Products have hardware for performing native system services.

• For example, the Motorola Droid X includes a Texas Instruments OMAP3630 processor
that is capable of executing the Linux operating system kernel, which provides native
system services to Android programs. See, e.g., Exh. G-1 [Motorola Droid X
Specification]; Exh. G-2 [Android Dev Site, “What is Android?”].

a procedural operating system,
having a native interface, for
controlling the computer
hardware to perform the native
system services

The ’983 Accused Products have a procedural operating system, having a native interface, for
controlling the computer hardware to perform the native system services.

• For example, the ’983 Accused Products execute a procedural Linux operating system
kernel to control the products’ hardware to provide native system services:

“Android relies on Linux version 2.6 for core system services such as security,
memory management, process management, network stack, and driver model. The
kernel also acts as an abstraction layer between the hardware and the rest of the
software stack.” See Exh. G-2 [Android Dev Site, “What is Android?”].

object oriented methods
requiring native system
services;

The ’983 Accused Products have object oriented methods requiring native system services.

• For example, applications on the ’983 Accused Products are written using the Java
programming language and run on the Dalvik Virtual Machine, a custom virtual
machine designed for embedded use, which runs on top of a Linux kernel. Android
provides many object oriented methods written in Java that manage core system

3

U.S. Patent No. 6,275,983 Infringement Contentions
services and thus require native system services.

• For example, Android provides the Thread.java class which offers threading system
services. See, e.g., Exh. G-3 [Thread.java], Exh. G-2 [Android Dev Site, “What is
Android?”].

procedural program logic
code, responsive to
invocations of the object-
oriented methods during
runtime, for causing the
procedural operating system to
control the computer hardware
to perform the required native
system services

The ’983 Accused Products have procedural program logic code, responsive to invocations of
the object-oriented methods during runtime, for causing the procedural operating system to
control the computer hardware to perform the required native system services.

• For example, the ’983 Accused Products include procedural program code for causing
the operating system to perform native threading system services, in response to calls
from the object-oriented thread methods. For example, Android applications access the
native threading system services by accessing procedural program logic code that is
responsive to the application’s call to an object-oriented method.

• For example, the setPriority() method in Thread.java calls setPriority() in
VMThread.java, which calls the native setPriority() in java_lang_VMThread.c, which
calls dvmChangeThreadPriority in Thread.c, which calls setpriority.s. See, e.g.,
Exh. G-3 [Thread.java]; Exh. G-4 [VMThread.java]; Exh. G-5
[java_lang_VMThread.c]; Exh. G-6 [Thread.c]; Exh. G-9 [setpriority.s].

• For example, an object instantiated from the RecentCallsListActivity.java class,
which forms part of the Contact Manager, creates a new thread before setting its
priority. See e.g., Exh. G-22 [RecentCallsListActivity.java].

executable program memory
associated with the computer
hardware for runtime
execution of the procedural
operating system, invocations
of the object-oriented methods
and related portions of the
procedural program logic code

The ’983 Accused Products have executable program memory associated with the computer
hardware for runtime execution of the procedural operating system, invocations of the object-
oriented methods and related portions of the procedural program logic code.

• For example, the Motorola Droid X includes 512 MB of RAM and 8GB of FLASH
that is associated with a Texas Instruments OMAP3630 processor. The processor is
capable of runtime execution of the procedural Linux operating system kernel, as well
as the Java object-oriented methods and related portions of the procedural program
logic code. See, e.g., Exh. G-1 [Motorola Droid X Specification], Exh. G-13 [Droid
X Specs].

4

U.S. Patent No. 6,275,983 Infringement Contentions

means for making
determinations during runtime
execution if object-oriented
methods to be invoked are
present in the executable
program memory; and

The ’983 Accused Products have means for making determinations during runtime execution
if object-oriented methods to be invoked are present in the executable memory.

• For example, in the ’983 Accused Products, the means for means for making
determinations during runtime execution if object-oriented methods to be invoked are
present in the executable program memory include the Dalvik Virtual Machine. See,
e.g., Exh. G-7 [Android Dev Site, “ClassLoader”].

• For example, when a method from an object-oriented class is called, the Dalvik
Virtual Machine checks to determine whether the class has been loaded. The
ClassLoader.loadClass() method is one example of how the Dalvik Virtual Machine
achieves this. Id.

“protected Class<?> loadClass (String className, boolean resolve)
Loads the class with the specified name, optionally linking it after loading. The
following steps are performed:
 1. Call findLoadedClass(String) to determine if the requested class has already
 been loaded.
 2. If the class has not yet been loaded: Invoke this method on the parent class
 loader.
 3. If the class has still not been loaded: Call findClass(String) to find the class.”

Id.

“protected final Class<?> findLoadedClass (String className)
Returns the class with the specified name if it has already been loaded by the virtual
machine or null if it has not yet been loaded.”

Id.

• For example, loadClass() in ClassLoader.c calls loadClass() in java_lang_VMClassLoader,
which calls dvmFindClassByName in InternalNative.c. See Exh. G-19
[ClassLoader.java], Exh. G-20 [java_lang_VMClassLoader.c], Exh. G-23
[InternalNative.c].

5

U.S. Patent No. 6,275,983 Infringement Contentions
• For example, findLoadedClass() in ClassLoader.c calls findLoadedClass() in

java_lang_VMClassLoader.c, which calls dvmLookupClass() in Class.c. See Exh. G-19
[ClassLoader.java], Exh. G-20 [java_lang_VMClassLoader.c], Exh. G-21 [Class.c].

a runtime loader, responsive to
the determinations, to
selectively load required
object-oriented methods into
the executable program
memory during runtime before
invocation of the object-
oriented methods.

The ’983 Accused Products have a runtime loader, responsive to the determinations, to
selectively load the required object-oriented methods into the executable program memory
during runtime before invocation of the object-oriented methods.

• For example, if the Dalvik Virtual Machine determines during runtime that requested
object-oriented methods are not in the executable program memory prior to
invocation, it will selectively load the required methods into memory. The
ClassLoader.loadClass() method is one example of how the Dalvik Virtual Machine
achieves this. See, e.g., Exh. G-7 [Android Dev Site, “ClassLoader”].

“protected Class<?> loadClass (String className, boolean resolve)
Loads the class with the specified name, optionally linking it after loading. The
following steps are performed:
 1. Call findLoadedClass(String) to determine if the requested class has already
 been loaded.
 2. If the class has not yet been loaded: Invoke this method on the parent class
 loader.
 3. If the class has still not been loaded: Call findClass(String) to find the class.”

Id.

“protected final Class<?> findLoadedClass (String className)
Returns the class with the specified name if it has already been loaded by the virtual
machine or null if it has not yet been loaded.”

Id.

• For example, loadClass() in ClassLoader.c calls loadClass() in java_lang_VMClassLoader,
which calls dvmFindClassByName in InternalNative.c. See Exh. G-19
[ClassLoader.java], Exh. G-20 [java_lang_VMClassLoader.c], Exh. G-23

6

U.S. Patent No. 6,275,983 Infringement Contentions
[InternalNative.c].

• For example, findLoadedClass() in ClassLoader.c calls findLoadedClass() in
java_lang_VMClassLoader.c, which calls dvmLookupClass() in Class.c. See
Exh. G-19 [ClassLoader.java], Exh. G-20 [java_lang_VMClassLoader.c], Exh. G-21
[Class.c].

7. A method for operating a
computer system, comprising
the steps of: executing a
procedural operating system
on computer hardware, the
procedural operating system
including a native interface,
responsive to procedural
function calls, for providing
native system services

The ’983 Accused Products perform a method for operating a computer system comprising the
steps of: executing a procedural operating system on computer hardware, the procedural
operating system including a native interface, responsive to procedural function calls, for
providing native system services.

• For example, the ’983 Accused Products execute a procedural Linux operating system
kernel to control the products’ hardware to provide native system services such as
thread and process management:

• “Android relies on Linux version 2.6 for core system services such as security, memory
management, process management, network stack, and driver model. The kernel also acts
as an abstraction layer between the hardware and the rest of the software stack.” See
Exh. G-2 [Android Dev Site, “What is Android?”].

issuing calls during runtime,
compatible with the native
interface, to provide the native
system services in response to
invocations of object-oriented
methods requiring such native
system services.

The ’983 Accused Products perform the step of issuing calls during runtime, compatible with
the native interface, to provide the native system services in response to invocations of object-
oriented methods requiring such native system services.

• For example, Android applications access the native threading system services by
accessing procedural program logic code that is responsive to the application’s call to
an object-oriented method.

• For example, the setPriority() method in Thread.java calls setPriority() in
VMThread.java, which calls the native setPriority() in java_lang_VMThread.c,
which calls dvmChangeThreadPriority in Thread.c, which calls setpriority.s. See,
e.g., Exh. G-3 [Thread.java]; Exh. G-4 [VMThread.java]; Exh. G-5
[java_lang_VMThread.c]; Exh. G-6 [Thread.c], Exh. G-9 [setpriority.s].

• For example, an object instantiated from the RecentCallsListActivity.java class, which
forms part of the Contact Manager, creates a new thread before setting its priority. See

7

U.S. Patent No. 6,275,983 Infringement Contentions
e.g., Exh. G-22 [RecentCallsListActivity.java].

determining during runtime if
object-oriented methods to be
invoked during runtime
execution are present in
executable program memory
associated with the computer
hardware; and

The ’983 Accused Products perform the step of determining during runtime if object-oriented
methods to be invoked during runtime execution are present in the executable program memory
associated with the computer hardware.

• For example, when a method from an object-oriented class is called, the Dalvik Virtual
Machine checks to determine whether the class has been loaded. The
ClassLoader.loadClass() method is one example of how the Dalvik Virtual Machine may
perform this step. See, e.g., Exh. G-7 [Android Dev Site, “ClassLoader”].

“protected Class<?> loadClass (String className, boolean resolve)
Loads the class with the specified name, optionally linking it after loading. The following
steps are performed:
 1. Call findLoadedClass(String) to determine if the requested class has already been
 loaded.
 2. If the class has not yet been loaded: Invoke this method on the parent class
 loader.
 3. If the class has still not been loaded: Call findClass(String) to find the class.”

Id.

“protected final Class<?> findLoadedClass (String className)
Returns the class with the specified name if it has already been loaded by the virtual
machine or null if it has not yet been loaded.”

Id.

• For example, loadClass() in ClassLoader.c calls loadClass() in java_lang_VMClassLoader,
which calls dvmFindClassByName in InternalNative.c. See Exh. G-19
[ClassLoader.java], Exh. G-20 [java_lang_VMClassLoader.c], Exh. G-23
[InternalNative.c].

• For example, findLoadedClass() in ClassLoader.c calls findLoadedClass() in
java_lang_VMClassLoader.c, which calls dvmLookupClass() in Class.c. See Exh. G-19,

8

U.S. Patent No. 6,275,983 Infringement Contentions
[ClassLoader.java], Exh. G-20 [java_lang_VMClassLoader.c], Exh. G-21 [Class.c].

selectively loading the object-
oriented methods into the
executable program memory
during runtime before
invocation thereof, if not yet
loaded.

The ’983 Accused Products perform the step of selectively loading the objectoriented methods
into the executable program memory during runtime before invocation thereof, if not yet
loaded.

• For example, if the Dalvik Virtual Machine determines during runtime that requested
object-oriented methods are not in the executable program memory prior to invocation,
it will selectively load the required methods into memory. The
ClassLoader.loadClass() method is one example of how the Dalvik Virtual Machine
may perform this step. See, e.g., Exh. G-7 [Android Dev Site, “ClassLoader”].

“protected Class<?> loadClass (String className, boolean resolve)
Loads the class with the specified name, optionally linking it after loading. The
following steps are performed:
 1. Call findLoadedClass(String) to determine if the requested class has already
 been loaded.
 2. If the class has not yet been loaded: Invoke this method on the parent class
 loader.
 3. If the class has still not been loaded: Call findClass(String) to find the class.”

Id.

“protected final Class<?> findLoadedClass (String className)
Returns the class with the specified name if it has already been loaded by the virtual
machine or null if it has not yet been loaded.”

Id.

• For example, loadClass() in ClassLoader.c calls loadClass() in java_lang_VMClassLoader,
which calls dvmFindClassByName in InternalNative.c. See Exh. G-19
[ClassLoader.java], Exh. G-20 [java_lang_VMClassLoader.c], Exh. G-23
[InternalNative.c].

• For example, findLoadedClass() in ClassLoader.c calls findLoadedClass() in

9

U.S. Patent No. 6,275,983 Infringement Contentions
java_lang_VMClassLoader.c, which calls dvmLookupClass() in Class.c. See
Exh. G-19 [ClassLoader.java], Exh. G-20 [java_lang_VMClassLoader.c], Exh. G-21
[Class.c].

16. A method for operating a
computer system including a
memory, comprising the steps
of:

The ’983 Accused Products perform a method for operating a computer system including a
memory.

The ’983 Accused Products have a processor and are capable of executing numerous computer
applications and are, accordingly, computer systems.

• For example, the Motorola Droid X includes a Texas Instruments OMAP3630
processor and is capable of executing applications such as a web browser, email client,
or telephone dialing application. See, e.g., Exh. G-1 [Motorola Droid X
Specification].

The ’983 Accused Products have a memory.

• For example, the Motorola Droid X includes 512 MB of RAM and 8GB of FLASH
that is associated with a Texas Instruments OMAP3630 processor. See, e.g., Exh. G-
1 [Motorola Droid X Specification], Exh. G-13 [Droid X Specs].

storing in the memory a
library of procedural program
logic code;

The ’983 Accused products perform the step of: storing in the memory a library of procedural
program logic code.

• For example, the ’983 Accused Products include procedural program code for causing
the operating system to perform native threading system services, in response to calls
from the object-oriented thread methods. For example, Android applications access the
native threading system services by accessing procedural program logic code that is
responsive to the application’s call to an object-oriented method.

• For example, the setPriority() method in Thread.java calls setPriority() in
VMThread.java, which calls the native setPriority() in java_lang_VMThread.c, which
calls dvmChangeThreadPriority in Thread.c, which calls setpriority.s. See, e.g.,
Exh. G-3 [Thread.java]; Exh. G-4 [VMThread.java]; Exh. G-5
[java_lang_VMThread.c]; Exh. G-6 [Thread.c], Exh. G-9 [setpriority.s].

• For example, an object instantiated from the RecentCallsListActivity.java class,
which forms part of the Contact Manager, creates a new thread before setting its

10

U.S. Patent No. 6,275,983 Infringement Contentions
priority. See e.g., Exh. G-22 [RecentCallsListActivity.java].

said library including first
procedural program logic code
which is responsive to
invocations of object-oriented
methods, for causing a
procedural operating system
to control the computer
system to perform first type
native system services;

The ’983 Accused products perform the step of storing in the memory a library of procedural
program logic code, said library including first procedural program logic code which is
responsive to invocations of object-oriented methods, for causing a procedural operating
system to control the computer system to perform first type native system services.

• For example, the ’983 Accused Products include procedural program code for causing
the operating system to perform native threading system services, in response to calls
from the object-oriented thread methods. For example, Android applications access the
native threading system services by accessing procedural program logic code that is
responsive to the application’s call to an object-oriented method.

• For example, the setPriority() method in Thread.java calls setPriority() in
VMThread.java, which calls the native setPriority() in java_lang_VMThread.c, which
calls dvmChangeThreadPriority in Thread.c, which calls setpriority.s. (See, e.g.,
Exh. G-3 [Thread.java]; Exh. G-4 [VMThread.java]; Exh. G-5
[java_lang_VMThread.c]; Exh. G-6 [Thread.c], Exh. G-9 [setpriority.s].)

• For example, an object instantiated from the RecentCallsListActivity.java class,
which forms part of the Contact Manager, creates a new thread before setting its
priority. See e.g., Exh. G-22 [RecentCallsListActivity.java].

said library including second
procedural program logic code
which is responsive to
invocations of object-oriented
methods, for causing a
procedural operating system
to control the computer
system to perform second type
native system services
different from said first type;

The ’983 Accused products perform the step of storing in the memory a library of procedural
program logic code, said library including second procedural program logic code which is
responsive to invocations of object-oriented methods, for causing a procedural operating
system to control the computer system to perform second type native system services
different from said first type.

• For example, the ’983 Accused Products include procedural program code for causing
the operating system to perform native process system services, in response to calls
from the object-oriented process methods. For example, the Process class includes the
method killProcess(), which is used to control a task by “kill[ing] the process with a
given PID.” The killProcess() method invokes the sendSignal() method, which is a
native method that accesses services provided by the underlying Linux kernel. See
Exh. G-18 [Android Dev Site, “Process"].” The Process class also defines

11

U.S. Patent No. 6,275,983 Infringement Contentions
statements that, for example, invoke the killProcess() method or the sendSignal()
method. Id.

• For example, the ActivityManagerService calls the killProcess() method in Process.java,
which calls the native sendSignal(), which is mapped to
android_os_Process_sendSignal() in android_util_Process.cpp, which calls kills.S. See
Exh. G-14 [ActivityManagerService.java], Exh. G-15 [Process.java], Exh. G-16
[android_util_Process.cpp], Exh. G-17 [kill.S].

executing a procedural
operating system in the
memory, the procedural
operating system including a
native interface responsive to
procedural function calls, for
providing native system
services;

The ’983 Accused products perform the step of: executing a procedural operating system in
the memory, the procedural operating system including a native interface responsive to
procedural function calls, for providing native system services.

• For example, the ’983 Accused Products execute a procedural Linux operating system
kernel to control the products’ hardware to provide native system services:

“Android relies on Linux version 2.6 for core system services such as security,
memory management, process management, network stack, and driver model. The
kernel also acts as an abstraction layer between the hardware and the rest of the
software stack.” See Exh. G-2 [Android Dev Site, “What is Android?].

• For example, the ’983 Accused Products include libraries for thread and process
services. See e.g., Exh. G-6, [thread.c], Exh. G-9 [setpriority.s], Exh. G-16.
[android_util_process.cpp], Exh. G-17 [kill.S].

• For example, an object instantiated from the RecentCallsListActivity.java class,
which forms part of the Contact Manager, creates a new thread before setting its
priority. See e.g., Exh. G-22 [RecentCallsListActivity.java].

running an object-oriented
program in a task address
space of the memory, the
program including an object-
oriented method requiring the
second type native system
services;

The ’983 Accused products perform the step of: running an object-oriented program in a task
address space of the memory, the program including an object-oriented method requiring the
second type native system services.

• For example, the Process class includes the method killProcess(), which is used to control
a task by “kill[ing] the process with a given PID.” This is invoked by, for example, the
Activity Manager. See Exh. G-14 [ActivityManagerService.java]. The killProcess()

12

U.S. Patent No. 6,275,983 Infringement Contentions
method invokes the sendSignal() method, which is a native method that accesses services
provided by the underlying Linux kernel. See Exh. G-18 [Android Dev Site,
“Process.”]. The Process class also defines statements that, for example, invoke the
killProcess() method or the sendSignal() method. Id. These statements are insertable by
programmers into object-oriented applications to access services to reference and control
a task.

determining during runtime
whether said second type
procedural program logic code
is available in said task
address space; and

The ’983 Accused products perform the step of: determining during runtime whether said
second type procedural program logic code is available in said task address space.

• For example, in the ’983 Accused Products, the dvmLoadNativeCode() function in
Native.c checks whether a given library is loaded. See e.g., Exh. G-12 [Native.c].

loading said second type
procedural program logic code
into said task address space
during runtime.

The ’983 Accused products perform the step of: loading said second type procedural program
logic code into said task address space during runtime.

• For example, the load() and loadLibrary() methods in Runtime.java, call the
nativeLoad() function in java_land_Runtime.c, which calls the dvmLoadNativeCode()
function in Native.c. See e.g., Exh. G-10 [Runtime.java], Exh. G-11
[java_lang_Runtime.c], Exh. G-12 [Native.c].

22. A computer system
including an executable
program memory, comprising:

The ’983 Accused Products have a processor and are capable of executing numerous computer
applications and are, accordingly, computer systems.

• For example, the Motorola Droid X includes 512 MB of RAM and 8GB of FLASH
that is associated with a Texas Instruments OMAP3630 processor. The processor is
capable of runtime execution of the procedural Linux operating system kernel, as well
as the Java object-oriented methods and related portions of the procedural program
logic code. See, e.g., Exh. G-1 [Motorola Droid X Specification], Exh. G-13 [Droid X
Specs].

a library of procedural
program logic code in the
computer system which is
responsive to invocations of

The ’983 Accused Products have an executable program memory comprising a library of
procedural program logic code which is responsive to invocations of object-oriented methods,
for causing a procedural operating system to control the computer system to perform native
system services.

13

U.S. Patent No. 6,275,983 Infringement Contentions
object-oriented methods, for
causing a procedural operating
system to control the computer
system to perform native
system services;

• For example, the ’983 Accused Products include procedural program code for causing
the operating system to perform native threading system services, in response to calls
from the object-oriented thread methods. For example, Android applications access the
native threading system services by accessing procedural program logic code that is
responsive to the application’s call to an object-oriented method.

• For example, the setPriority() method in Thread.java calls setPriority() in
VMThread.java, which calls the native setPriority() in java_lang_VMThread.c,
which calls dvmChangeThreadPriority in Thread.c, which calls setpriority.s. See,
e.g., Exh. G-3 [Thread.java]; Exh. G-4 [VMThread.java]; Exh. G-5
[java_lang_VMThread.c]; Exh. G-6 [Thread.c], Exh. G-9 [setpriority.s].

• For example, an object instantiated from the RecentCallsListActivity.java class, which
forms part of the Contact Manager, creates a new thread before setting its priority. See
e.g., Exh. G-22 [RecentCallsListActivity.java].

a procedural operating system
in the computer system, the
procedural operating system
including a native interface
responsive to procedural
function calls, for providing
native system services;

The ’983 Accused Products have a procedural operating system, having a native interface
responsive to procedural function calls, for providing native system services.

• For example, the ’983 Accused Products execute a procedural Linux operating system
kernel to control the products’ hardware to provide native system services:

“Android relies on Linux version 2.6 for core system services such as security,
memory management, process management, network stack, and driver model. The
kernel also acts as an abstraction layer between the hardware and the rest of the
software stack.” See Exh. G-2 [Android Dev Site, “What is Android?].

• For example, the setPriority() method in Thread.java calls setPriority() in
VMThread.java, which calls the native setPriority() in java_lang_VMThread.c,
which calls dvmChangeThreadPriority in Thread.c, which calls setpriority.s. See,
e.g., Exh. G-3 [Thread.java]; Exh. G-4 [VMThread.java]; Exh. G-5
[java_lang_VMThread.c]; Exh. G-6 [Thread.c], Exh. G-9 [setpriority.s].

• For example, an object instantiated from the RecentCallsListActivity.java class, which
forms part of the Contact Manager, creates a new thread before setting its priority. See
e.g., Exh. G-22 [RecentCallsListActivity.java].

14

U.S. Patent No. 6,275,983 Infringement Contentions

an object-oriented program in
the executable program
memory, the program
including an object-oriented
method requiring native
system services;

The ’983 Accused Products have an object-oriented program in the executable program
memory, the program including an object-oriented method requiring native system services.

• For example, applications on the ’983 Accused Products are written using the Java
programming language and run on the Dalvik Virtual Machine, a custom virtual
machine designed for embedded use, which runs on top of a Linux kernel. Android
provides many object oriented methods written in Java that manage core system
services and thus require native system services. See e.g., Exh. G-2 [Android Dev
Site, “What is Android?].

• For example, Android provides the Thread.java class which offers threading system
services. See, e.g., Exh. G-3 [Thread.java].

a processor in the computer
system for determining during
runtime whether procedural
program logic code is
available in the executable
program memory to provide
said required native system
services;

The ’983 Accused Products have a processor for determining during runtime whether
procedural program logic code is available in the executable program memory, to provide
required native system services.

• For example, the Motorola Droid X includes a Texas Instruments OMAP3630
processor and is capable of executing applications such as a web browser, email
client, or telephone dialing application. See, e.g., Exh. G-1 [Motorola Droid X
Specification].

• For example, in the ’983 Accused Products, the dvmLoadNativeCode() function in
Native.c checks whether a given library is loaded. Upon information and belief, the
Android libraries which are loaded using this function include code for performing native
system services. See e.g., Exh. G-12 [Native.c].

said processor loading
procedural program logic code
from said library into the
executable program memory
during runtime to provide said
required native system
services;

The processor in the ’983 Accused Products loads procedural program logic code from a
library into the executable program memory during runtime to provide required native system
services.

• For example, in the ’983 Accused Products, the means for selectively loading related
portions of the procedural program logic code into the executable program memory upon
runtime loading of the selected object-oriented methods include the code for loading
shared libraries, such as the Java Native Interface (JNI).

15

U.S. Patent No. 6,275,983 Infringement Contentions
• For example, load() and loadLibrary() methods in Runtime.java, call the nativeLoad()

function in java_land_Runtime.c which calls the dvmLoadNativeCode() function in
Native.c. See e.g., Exh. G-10 [Runtime.java], Exh. G-11 [java_lang_Runtime.c],
Exh. G-12 [Native.c]. Upon information and belief, the Android libraries which are
loaded by this function include code for performing native system services.

said processor invoking said
object-oriented method of said
object-oriented program
during runtime; and

The processor in the ’983 Accused Products invokes an object-oriented method of an object-
oriented program during runtime.

• For example, applications on the ’983 Accused Products are written using the Java
programming language and run on the Dalvik Virtual Machine, a custom virtual
machine designed for embedded use, which runs on top of a Linux kernel. Android
provides many object oriented methods written in Java that manage core system
services and thus require native system services. See e.g., Exh. G-2 [Android Dev
Site, “What is Android?].

• For example, Android provides the Thread.java class which offers threading system
services. See, e.g., Exh. G-3 [Thread.java].

said loaded procedural
program logic code responding
to said invoking to cause said
procedural operating system to
control the computer system to
perform said required native
system services.

The ’983 Accused Products contain procedural program logic code, responsive to invocations
of the object-oriented methods during runtime, for causing the procedural operating system to
control the computer hardware to perform the required native system services.

• For example, the ’983 Accused Products include procedural program code for causing
the operating system to perform native threading system services, in response to calls
from the object-oriented thread methods. For example, Android applications access the
native threading system services by accessing procedural program logic code that is
responsive to the application’s call to an object-oriented method.

• For example, the setPriority() method in Thread.java calls setPriority() in
VMThread.java, which calls the native setPriority() in java_lang_VMThread.c,
which calls dvmChangeThreadPriority in Thread.c, which calls setpriority.s. See,
e.g., Exh. G-3 [Thread.java]; Exh. G-4 [VMThread.java]; Exh. G-5
[java_lang_VMThread.c]; Exh. G-6 [Thread.c], Exh. G-9 [setpriority.s].

• For example, an object instantiated from the RecentCallsListActivity.java class, which

16

U.S. Patent No. 6,275,983 Infringement Contentions
forms part of the Contact Manager, creates a new thread before setting its priority. See
e.g., Exh. G-22 [RecentCallsListActivity.java].

