Apple, Inc. v. Motorola, Inc. et al Doc. 244 Att. 1

Exhibit 39

Dockets.Justia.com

http://dockets.justia.com/docket/wisconsin/wiwdc/3:2010cv00662/29072/
http://docs.justia.com/cases/federal/district-courts/wisconsin/wiwdc/3:2010cv00662/29072/244/1.html
http://dockets.justia.com/

™

PVPlayer SDK Developer's Guide
OHA 1.0, rev. 1
Oct 20, 2008

© 2008 PacketVideo Corporation
This document licensed under the Apache License, Version 2.0

WI-Apple1695923

PVPlayer SDK Developer's Guide
OHA 1.0, rev. 1

References
1. http://www.loc.gov/standards/iso639-2. A URL reference to ISO-639-2/T language codes.
2. http://www.w3.0rg/TR/NOTE-datetime. A URL reference to the ISO 8601 time format.
3. http://www.id3.org/. A URL reference to the ID3 metadata format.

-Page 2 of 98 -

WI-Apple1695924

PVPlayer SDK Developer's Guide
OHA 1.0, rev. 1

Table of Contents

tintreduction. 0 .
1.1 PVPlayer SDK Definition
1.2 PV PIayer SDK SO, i it eee e e
G H NS Lo 1= o ol T .

2 High Level Desiqn............ i e
2.1 Scope and Limitations .
2.2 Requirements on Platform and TOOIS.o 8
2.3 Architecture and Component BreakdowWn. 8
2.4 CONIEOl FlOW. .o et ettt e e et i e e e
2.5 DAt FIOW. .. ieeas

3 PVPlayer Engine Design
3.1 PVVPlayerInterface API
3.2 AsynNchronous Operations. et 10
OIS =\V/=Y 018 m F=1a e | ITaTe e T T T T LT U T 10
3.4 PVPIlayer ENgiNg StrUCtUIe. .. .cooiiiii e 11
3.5 State Transition Diagram

dinterface.......... i,

4.2 AdAPTAtION LAYE. ..t
4.3 Multi-Threading SUPPOM o ettt ee e
4.4 Media Data Output to Data SinK.......oooiiiiiii et reei 15
4.5 PortingtoaNew Platform.............ooooiiiiiii e,

5PVMENodesforPlaver...
5.1 Data SINK NOGES . ..ottt e e i ee e rreeaieens

6 Temporal Synchronization.........c..ccoceeeiiiiniiciceiiiiieiiieieees e
6.1 Clock in PVPlayer SDK...........cooeeiiiiiiiiiiiiiiiciiiiiiiiiiiiiciiiii

7 Synchronization with timestamps............cccininiiiiiiiiiniiiisiiininea,]
7.1 Synchronization with flow controlling data sink.............cooccooiiiiiiiiiee e, 19
7.2 Synchronization with combinatioN............ooooiiiiiiiii e, 20
7.3 Faster or slower than “real-time”...........ooooviieiiiiiiiiieii e,

8 ya2ypackonbiel.BnBnn5nBoBn@B = =~
8.1 Starting and Stopping
8.2 Pausing @nd re&SUMING. ... oo
8.3 REPOSIIONING. ..ttt ettt iieees

9 Capability Query and Configuring Settings , e
9.1 PVPIlayer Enging KeY StriNgS. . .ooouuiiii ettt
9.2 Node Level Key StriNgS. ... e e
0.3 USAQE EXAMIPDIES . ..ottt ieeas

WI-Apple1695925

Open

PVPlayer SDK Developer's Guide
OHA 1.0, rev. 1

10 Metadata Handling

10.1 Metadata retrieval APls
10.2 RetrievingMetadata List.........oco
103 QuervingMetadata.o..oooooi e
10.4 Metadata StOrage. .. i e
10.5 Metadata KEYS. ..o
10.6 Track-level Information....... ..o e ee s
10.7 Codec Level Format Specific Information...........ooooveeeiiiiiiiiiiiiiiiiieee 44
10.8 LaNQUAGE COBS.ttt 44
109 DRMRelated Metadata..........oooooiiiiiiiiiiiiiiiiiiiiiee e 45
10.10 Access to Other Metadatacooiiiiiiiii e, 49
10.11 Receiving Metadata from Informational Event Callback..............c.ooeeveeivven.... 49
10.12 Metadata Retrieval Usage Example..........oooooiiiiiiiiiii e
10.13 Supported Key Strings in Select PVMFE Nodes.......coooooeeiiiiiiiiieiinn.

11 Playback Position.......... e
11.1 Retrieve Playback Position Using API CaII ...
11.2 Receive Playback Position from Informational Event

12 Frame and Metadata Utility...........cccceeeieiniiiniinniniiiiiieiieeiinninieeiannnns
12.1 Creating and Deleting the Utility..........ccooooieiiiiiiiiiien,
12.2 Options for Specifying the Desired Frame...........ccoooeiiiiiiiiiiiiiiiiieiiieeieeeeeen
12.3 Set Timeout for Frame Retrieval..........ooooiiiiiiiii e,
124 UsggeSequente ... i e

13 Error and Fault Handling , , .)
131 Error HANANNG. oo e
13,2 ErTOr COUES. .o
13.3 Error Code Translation and Error Chain......ooooooiviveiiiiiiiiiiiiiiiiiiiiiiiiiieiicieeieen 60
13.4 Typical Errors in Command RESPONSE.uuuuiiiiiiee it iiee s, 63
13.5 Typical Error EVENtS. ..o et 69
13.6 Fault Detectlon Handling and Recoverv ..

14.1 Instantiating PVVPlayer SDK ..

14.2 Shutting down PVPIlayer SDK ..o 73
14.3 Open a Local MP4 File, Play and Stop.......ooiiiiiiiii e, 74
14.4 Open a RTSP URL,. Play and StOp........oooooeiiiiiiiiiiiiieiieeeeiee e 76
14.5 Play a Local File Until ENd of Clip.....cooviiiiiiiiiiie e 77
14.6 Play a Local File, Stopand Play AQaiN........ocoooooeiiiiiiiiiiiiiiiiiiiiiiiiieeie 7
14.7 Play a local file, stop, open another file, and play...........oooooiiiveiiiiiiiiiiiieiieiinnn., 78
14.8 Play a local file, pause, and reSUME........oooovveiiiiiiiieeiiie e 80
14.9 Play a local file, pause, and StOp. ...t 80
14.10 Playback of DRM Protected Contents...........oooooiioiiiiiiiiiiiieiiiiceeieeiieeei 81
14.11 Using SetPlaybackRange and PVMFInfoEndOfData Event............................ 89

Daaa 4 of 08
-rage 4 oT Yo -

WI-Apple1695926

(e]

upen st ; .

-R PVPlayer SDK Developer's Guide
OHA 1.0, rev. 1

14.12 Looped Playback Using SetPlaybackRange...........cooooiiiiiiiiiiiiiiiieieiiieee 90
14.13 Start Download SESSION.ttt e 91
14.14 Handling Progressive Download EVEeNtS.ooiiiieiiiiieeiiiieeeiieeeeiieeeieeens 92
14.15 Handling Download EVENtS. ... 93
14.16 Auto-Pause-Resume in Progressive Download Session.........coooooeiiiiiiiiiiinnnn, 93
14.17 Error Recovery During Initialization.............ooooeeeiiiiiiiiiiiiiiiiiiiiieieieeee 95
14.18 Error Recovery During Playback. ..o 95

14.19 Unrecoverable Error HandliNg. ...

15 Application’s involvement in Track Selection e e
15.1 Memory Considerations...............cooooeiiiiiiiiiiiiiiiiiiiiiii

16 Diagnostics ...
16.1 Instrumentation and Debug Logs

WI-Apple1695927

PVP (Developer's Guide

OHA 1.0, rev. 1

List of Figures

Figure 1: PVPlayer SDK Software STACK............cooooiiiiiiiiii e e 9
FIGUre 2: Class DIAgIam.. oo e e e e e e e e e e e e e e e e e et e st e s st b e s e e e e e e e aeeaesb s e e essaneeeraan 11
Figure 3: State TransSition DIAgram...........oooiiiiiiiiiieiee e e e e e e e e e e s s e e e e e e e e e ae e anaaas 12
Figure 4: PVPlayer Adaptation LaYer........... ..o 14
Figure 5: Multi-Threading SUPPOTIT..........uoiiiiiiiie et e e e e e e e e e e e e e e e e e aaaanns 15
Figure 6: Media Output to Node and Media [O.............cuuiiiiiiiiiii e e e e 15
Figure 7: Independent Frame is Outside of WINAOW............ccccoiiiiiiiiiiiiii e 22
Figure 8: Independent Frame is Inside WINAOW................oooiiiiiiiiiiiiiie e 22
Figure 9: Reposition Processing FIOW Chart............ooooiiiiiiiiii e e 23
Figure 10: Capability and Configuration Interface Usage SeqUeNCe.............ccccoeveieiiiiiiiiiiiiiic i 32
Figure 11: Mapping of Multiple Metadata Key ListS. ..o 34
Figure 12: Metadata Retrieval Usage SEQUENCE...............uuiiiiiiiiiii it e e 51
Figure 13: Create the ULITIY. ..o e e e e e e e e e e e e e e e e aaa e e aaan 55
Figure 14: Delete the ULIlIt............oooiiiii e e et e e e e e e e 56
Figure 15: Frame and Metadata Utility Usage SeqUENCE..............ceuiiiiiiiiiiiii e 58
Figure 16: Class Diagram of Error Chain............coooiiiiiiii e e 61
Figure 17: Streaming Error Event and Chain.............c.ouoiiiiiiiii e e e 62
Figure 18: MP4 File Parsing Error Event and Chain................ e 62
Figure 19: Sequence Diagram for Creating PVPIaYer...........ooooiiiiiiiice e 73
Figure 20: Sequence Diagram for Deleting PVPIQYET..........cooviiiiiiiiiiiieee e e 74
Figure 21: Open a Local MP4 File, Play and STOP..........coooiiiimi e 75
Figure 22: Open @ RTSP URL, Play and StOP.........couiiiiiiiiiiiiiiiiee et 76
Figure 23: Play a Local File Until ENd Of CliP.....coiiiiiiiiiiiciiciiie e ee e eae e 77
Figure 24: Play a Local File, Stop and Play AQain. ... 78
Figure 25: Play a local file, stop, open another file, and play..............ccccociiiiiiiiiiiiiii, 79
Figure 26: Play a local file, pause, and reSUMIE..........c.cuuiiiiiiiiieciee e e e e e e e 80
Figure 27: Play a local file, pause, and StOP........cccoooiiiiiiii e 81
Figure 28: Preparation Sequence to Play DRM Protected Contents.............ccccccceiiiiiiiiiiiiiiiiiiieeeeee, 83
Figure 29: Playback of DRM Content with a Valid License Available..............ccccccccciiiiiiiiiiiiiiiiiieeee, 84
Figure 30: Playback of DRM Content without a Valid License Available.....................cccccnnn, 85
Figure 31: Cancel License ACQUISIHION.......ccii i i iisonins 86
Figure 32: Preview of DRM Content without a Valid License Available................c.cooooiiiiiiiiiieeeee, 87
Figure 33: Playback of DRM Content with Auto-Acquisition of the License..............cccceeeeiiiiiiiiniiiecn, 88
Figure 34: Using SetPlaybackRange and PVYMFInfoEndOfData Event...........cccccccoooooiiiiiiiiiicineeeen, 89
Figure 35: Looped Playback Using SetPlaybackRange..............ccuviiiiiiiiiiiniii e 90
Figure 36: Start DOWNIOAd SESSION........ccooiiiiiiiiiiiic e ae e e 91
Figure 37: Handling Progressive Download EVENTS...........c.cccciiiiiiiiiiiiiiiieee et 92
Figure 38: Handling DOwnIoad EVENES......... ..o e e 93
Figure 39: Auto-Pause-Resume in Progressive Download SeSSIiON...........cceviviiieiiiiiiiiiiiiiieiiiiiin e, 94
Figure 40: Error Recovery During INtialization..............ooooiiiiiiiiiiiiie e 95
Figure 41: Error Recovery During Playback........ ... 96
Figure 42: Unrecoverable Error HandliNg...........ccooviiiiiiiiiioi e 96

WI-Apple1695928

Open i , :
~ie PVP eloper's Guide

OHA 1.0, rev. 1

1 Introduction

This document provides detailed information for developers writing clients to the PVPlayer SDK.
Information covered includes an overview of the high-level architecture, a description of control flow and
data flow, details of the state machine, error handling, asynchronous events, and use-case scenarios.
The document also covers the topic of logging and diagnostics.

1.1 PVPlayer SDK Definition

PVPlayer SDK is a set of components and modules that allows synchronized playback of multimedia
presentations. A multimedia presentation is defined as a collection of various media that are rendered
together in some sort of a synchronous manner. This could be in the form of a file encoded into a specific
format (like MP4, 3GPP), a live RTSP streaming session, or a SMIL presentation or any other form.

In addition to standard playback features such as repositioning and volume control, PVPlayer SDK offers
more sophisticated features such as downloading of content and playback of content as it is being
downloaded. The amount of features contained in a particular PVPlayer SDK depends on the
requirements, design decisions, and limitations imposed by the platforms and chosen design.

1.2 PVPlayer SDK Scope

PVPlayer SDK includes all components needed to satisfy the definition above but excludes the
application (graphical or command-line) which uses the PVVPlayer SDK, the operating system or platform
that PVPlayer SDK runs on and data sources (e.g. multimedia file, streaming server) and sinks (e.g. audio
device, display) for the multimedia presentation. The scope of PVPlayer SDK could be further reduced for
particular platform with particular feature sets, but this document covers the largest extent of PVPlayer
SDK. PVPIayer SDK is composed of and utilizes other components from PacketVideo (e.g. OSCL, PVMF
nodes) so certain details might be referred to another document.

1.3 Audience

This document is intended for people wanting to understand what is PVPlayer SDK and developers
working on or using PVPlayer SDK. Information contained within this document will allow people to know
what PVPlayer SDK can and cannot do, to learn how to use PVPlayer SDK, and to modify PVPlayer SDK
for new features or debug problems.

WI-Apple1695929

PVP

DK Developer's Guide
OHA 1.0, rev. 1

2 High Level Design

2.1 Scope and Limitations

The PVPlayer SDK incorporates all the necessary features to support the requirements listed in the
previous section. The set of features is designed to handle the requirements of a fairly complete player
application. The modular architecture and designed extension mechanism provide convenient mechanism
for expanding or customizing the feature set when necessary. Even between new releases and upgrades
of the PVPIlayer SDK, it is possible to customize certain behavior through the components that are passed
to the PVPlayer SDK from the outside (e.g., the sources and sinks).

2.2 Requirements on Platform and Tools

The design and implementation of the PVPlayer SDK imposes certain requirements on the
platform/operating system and the development tools. The PVPlayer SDK is written in the C++ language
so it requires ANSI C++ development tool support for the platform. The player implementation does not
require every feature defined by the C++ standard. For example, run time type indication (RTTI) is not
required nor is exception handling. However, C++ template support is required. If the PVPlayer SDK
interface is expected to provide another type of interface (e.g. C, Java), PVPlayer SDK can provide an
adaptation layer interface but the internal components still need to be compiled in C++.

The PVPlayer SDK source code is based on PacketVideo’s Operating System Compatibility Library
(OSCL) and the PacketVideo Multimedia Framework (PVMF). The PVPlayer SDK relies on OSCL to
provide system functionality that is portable across platforms (i.e., it serves as an OS abstraction layer
that presents a platform-independent API to the PVPlayer SDK). PVMF is the framework defining the
multimedia architecture upon which the PVPlayer SDK is based. OSCL requires a platform with services
provided by fairly complete operating system. The platform must have services such as dynamic memory
management, threading, file 1/0, network sockets, domain name services, and time information. For a
complete list of platform services expected by OSCL, refer to the OSCL design and porting documents.

2.3 Architecture and Component Breakdown

The PVPlayer SDK architecture follows the standard architecture defined by PVMF with a modular
structure that makes the SDK flexible, scalable, and portable. The PVPlayer engine is the heart of the
PVPlayer SDK. The engine utilizes PVMF nodes and node graphs to process data and internal utilities for
node registration, discovery, and graph construction. The interface to the PVPlayer engine can be the
primary OSCL-based one or it can be adapted to another specification based on the platform
requirements. The diagram below shows a typical composition of the PVPlayer SDK. The actual
composition would differ from one platform to the next so optional components are colored in yellow. If the
adaptation layer were not present, the application would interface directly with PVPlayer engine and
PVMF nodes.

WI-Apple1695930

PVPlayer SDK Developer's Guide
OHA 1.0, rev. 1

Platform

Application

Adaptation Layer

PVMF Node.

~ pvPlayer SDK
 standard component

pvPlayer SDK
optional component

Figure 1: PVPlayer SDK Software Stack

2.4 Control Flow

Playback control for PVPlayer SDK originates from the user of the PVPlayer, typically a player
application. The player application is responsible for instantiating and destroying PVPlayer SDK and
calling the appropriate PVPlayer SDK APIs to initiate, handle, and terminate multimedia playback.

Within PVPlayer SDK, control flow is usually top-down. The application requests are received by
PVPlayer engine via adaptation layer if present. The PVPlayer engine then sends the appropriate control
data to PVMF nodes that it utilizes. There are some control data between connected nodes but major
control data is between PVPlayer engine and PVMF nodes.

2.5 Data Flow

The PVPlayer SDK processes multimedia data by using one or more PVMF nodes connected together in
a graph. The types of PVMF nodes used and the graph configuration would depend on the playback
parameters such as source clip type and playback operation. Other types of data such as clip metadata
and performance profile would be extracted by PVPlayer engine or PVYMF node or combination of both
and then returned to the user of PVPlayer SDK through the appropriate interface.

WI-Apple1695931

PVP

DK Developer's Guide
OHA 1.0, rev. 1

3 PVPlayer Engine Design

The PVPIlayer engine is the heart of PVPlayer SDK. It receives and processes all requests for PVPlayer
SDK from the user and manages the PVMF components required for multimedia playback and related
operations. The idea is to hide the details of direct interaction with the multimedia components from the
application and simplify its task to high-level control and status. The PVPlayer engine also detects,
handles, and filters events and information generated during multimedia playback operations.

3.1 PVPlayerinterface API

Users of all PVPlayer SDK interfaces to PVPlayer engine via an interface class called PVPlayerinterface
regardless of whether there is an adaptation layer interface between the user and PVPlayer engine.
PVPlayerinterface is an OSCL-based interface and follows the common interface design for PacketVideo
SDK. In addition to multimedia playback specific APIs, PVPlayerinterface provides methods to retrieve
SDK information, manipulate logging, and cancel commands. To expose other interfaces available from
PVPlayer engine based on PVPlayer SDK configuration and current runtime status, PVPlayerInterface
provides methods to query and retrieve extension interfaces. For a list and description of
PVPlayerinterface API, refer to the PVVPlayerinterface APl document generated from doxygen markup.

3.2 Asynchronous Operations

The PVPIlayer engine processes most commands initiated by API calls asynchronously. There are some
commands that are processed synchronously and they can be differentiated by the return value.
Synchronous commands return a PVMF status code which tells the user whether the command
succeeded or not and if it did fail, what the error was. All asynchronous commands return a command ID.
For the user to be notified of asynchronous command completion, the user must specify a callback
handler when instantiating PVPlayer engine via the factory function. When the asynchronous command
completes, PVPlayer engine calls the callback handler with the command ID for the command, command
status, and any other relevant data. To process the command asynchronously, the PVPlayer engine is
implemented as an active object, which gets to run according to the active scheduler running in the
thread. The PVPlayer engine expects scheduler to be available when instantiated and the engine itself
will not directly create a thread or scheduler.

With asynchronous commands, there is a possibility of commands not completing in expected time. To
deal with this issue, PVPlayer engine provides standard PV SDK APIs to cancel a specific or all issued
commands. The user of PVPlayer SDK can use these APIs to cancel any request that did not complete in
time or are not needed due to changing circumstances. In PVPlayer engine, it might have to deal with
lower level components that behave asynchronously. To prevent an unresponsive lower level component
from blocking PVPlayer engine operation, PVPlayer engine has timeout handling for any asynchronous
commands that it issues. When timeout does occur, the asynchronous command is canceled and is
handled appropriately (e.g. command failure, error event).

3.3 Event Handling

The PVPlayer engine notifies the user of errors and other information not related to API calls as
unsolicited events. The notification is handled by making a callback on handlers specified by the user of
PVPlayer engine. There are two callback handlers, one for error events and one for informational events,
that must be specified by the user when instantiating PVPlayer engine via the factory function.

ade 1V 0

WI-Apple1695932

3.4 PVPlayer Engine Structure

The component diagram below illustrates how the PVPlayer engine interfaces to the application when the
application uses PVPlayerinterface directly without any adaptation layer. PVPlayerFactory component
handles the instantiation and destruction of PVPlayerEngine object. All PVPlayer engine APIs are
provided by PVPlayerinterface. PVPlayerEngine uses the three callback handlers passed in by the
application, PYCommandStatusObserver, PVIinformationalObserver, and PVErrorEventObserver, to notify
the application above asynchronous command completion and unsolicited error and informational events.

PVP (Developer's Guide

OHA 1.0, rev. 1

*

PVCommandStatusObserver

_D

Kuses»

Application Class

PVinformationalObserver

|:L|
|

«utility»
PVPlayerFactory

1

*

«interface»
PVPlayerinterface

«uses»

il

PVErrorEventObserver

PVPlayerEngine

&>
>
>

1

Figure 2: Class Diagram

3.5 State Transition Diagram

PVPlayer engine maintains a state machine and the state is modified based on PVPlayerinterface APIls
called and events from PVMF components below. The diagram below shows the state transition diagram

for PVPlayer engine’s state machine.

WI-Apple1695933

PVP

PREPARED

Start()

Stop()
Sto
PO STARTED

Paus Resume()

RemoveDataSink()
Stop()
PAUSED
When error

occurs
Figure 3: State Transition Diagram

eloper's Guide
OHA 1.0, rev. 1

Prepare()

AddDataSource() AddDataSink()

INITIALIZED

RemoveDataSource()

The PVPlayer engine starts in the IDLE state after it is instantiated. While in the IDLE state, the data
source(s) for multimedia playback can be specified by AddDataSource() API. After the data source is
specified, calling Init() puts PVPlayer engine in INITIALIZED state which means the data source has been
initialized. In the INITIALIZED state, the user can query data source information such as available media
tracks and metadata. While in INITIALZED state, the user calls AddDataSink() to specify the data sink(s)
for multimedia playback.

After all the data sinks are added, the user calling Prepare() causes PVPlayer engine to set up the
necessary PVMF nodes in a data-flow graph (the data-flow graph is covered in later section) for
multimedia playback based on data sources and data sinks specified. Media data is also queued for
immediate playback in PREPARED state. The user calling Start() in PREPARED state initiates the actual
multimedia playback and PVPlayer engine goes to STARTED state. Media data flows from data source to
data sink and out of the sink in a manner specified by the user. The user can go back to the INITIALIZED
state from the PREPARED state by calling Stop(). Doing so would have the PVPlayer engine stop the
data-flow graph and flush all queued media data.

While the engine is in STARTED state, the user can either call Pause() or Stop(). Calling Stop()
immediately ceases playback operation, flushes all media data, and places the engine back in
INITIALIZED state. If Pause() is called, playback operation is stopped but media data in the flow is not
flushed. PvPlayer engine goes into PAUSED and playback operation can continue from where it paused
by calling Resume(). Stop() can also be called from PAUSED state to return the engine to the
INITIALIZED state.

Calling Stop() returns PVPlayer engine to the INITIALIZED state. Back in the INITIALIZED state, data
sinks can be added and/or removed by calling AddDataSink() and RemoveDataSink(). Playback can
restarted by calling Prepare() then Start(), but to go back to the IDLE state for shutdown or to open
another data source for playback, the user must call Reset(). If all data sinks are not removed by explicitly
calling RemoveDataSink() in INITIALIZED state, Reset() call removes all the data sinks. After Reset()
completes, the engine is back in IDLE state. Data sources can be removed with RemoveDataSource()
and new data sources can be added with AddDataSource(). If the user wants to shutdown PVPlayer SDK,

WI-Apple1695934

upen e . .
~ie PVP (Developer's Guide

OHA 1.0, rev. 1

PVPIlayer engine can be properly destroyed in the IDLE state. It is also possible to call Reset() while in
PREPARED, STARTED, or PAUSED state. Internally this will trigger a Stop() call followed by a Reset().

If PVPlayer engine encounters an error due to usage error or error events from within or components
below which requires time to properly handle, the engine will go into a transitional ERROR state and try to
recover. If the error is unrecoverable or if the engine encounters more errors during error recovery,
PVPlayer engine will clean up everything and go to the IDLE state. If the engine recovers from the error,
the resulting engine state would depend from which state the engine encountered the error. If the engine
was in or past the INITIALIZED state (PREPARED, STARTED, PAUSED, or any transition state in
between), PVPlayer engine will try to recover to the INITIALIZED state. If the error occurred while in IDLE
or initializing, then PVPlayer engine will try to recover to the IDLE state without performing a total cleanup.
When error recovery completes, PVPIlayer engine will report PVMFInfoErrorHandlingComplete
informational event. To determine whether the engine is handling the error asynchronously, the user
should check the state of the engine synchronously in the command completion or error event handler. If
the engine state is the ERROR state, the user should wait for the PVMFInfoErrorHandlingComplete
informational event.

This state transition diagram describes the basic state transition model for all PVPlayer engine playback
operation.

WI-Apple1695935

4 Interface

4 1 Default Interface

PVP

eloper's Guide
OHA 1.0, rev. 1

The standard interface to PVPlayer engine interface is the OSCL-based interface, PVPlayerinterface.
This is the base level API which directly controls PVPlayer engine. Use of this interface requires the user
to be aware of OSCL types and components and PVMF types and components.

4.2 Adaptation Layer

If the interface to PVPlayer SDK needs to be different than the OSCL-based interface, another interface
layer needs to be created to “wrap” around the OSCL-based interface. This “wrapper” is referred to as an
adaptation layer for OSCL-based PVPlayer engine interface.

One possible reason to create an adaptation layer would be to encapsulate the OSCL interface with types
and components of a particular platform or operating system (e.g. ANSI C interface, Symbian interface).
Another reason would be that the adaptation layer modifies the interface and behavior of PVPlayer SDK
to match the expectation of the application (e.g. legacy interface). The adaptation layer could also
combine PVPlayer SDK with another SDK or component to provide a unified interface to the application.
The block diagrams below illustrate how the adaptation layer relates to PVPlayer Engine and its OSCL-
based interface. The diagram on the right shows the adaptation layer adding more functionality by

including another engine.

pvPlayer Adapation Layer

pvPlayer+ Adapation Layer

pvPlayer OSCL Interface

pvPlayer OSCL Interface

pvPlayer Engine

Another Engine
pvPlayer Engine

Figure 4: PVPlayer Adaptation Layer

4.3 Multi-Threading Support

The default OSCL-based interface is not multi-thread-safe. To have multi-threading support in the
interface, the adaptation layer would need to provide such a feature. One method is to use OSCL proxy
interface component to provide multi-threading support. Other method is to add platform specific multi-
threading support for a particular platform to PVPlayer SDK’s adaptation layer. The diagram below shows
how multi-threading support would be accomplished via the two methods. In the left block diagram, the
adaptation layer utilizes the OSCL proxy framework, which minimizes platform specific coding in the
adaptation layer by pushing platform specific code to OSCL. In the right block diagram, the adaptation
layer directly uses the platform threading functionality so the adaptation layer becomes platform specific.

WI-Apple1695936

PVP (Developer's Guide

OHA 1.0, rev. 1

pvPlayer Adapation Layer pvPlayer Adapation Layer

pvPlayer OSCL Interface OSCL Proxy Framework pvPlayer OSCL Interface

Platform Threading Support

pvPlayer Engine pvPlayer Engine

Platform Threading Support

Figure 5: Multi-Threading Support

4.4 Media Data Output to Data Sink

The PVPlayer engine can utilize any PVMF node as the media data sink, but in most PVPlayer SDK
usage, synchronized media data would be rendered via appropriate output media devices. For video, the
media device would be the display and for audio, the media device would be the PCM audio device.
Output media devices are typically platform specific. PvPlayer SDK handles interfacing to platform
specific output media devices one of two ways. First method is to encapsulate the media device in a
PVMF node which PVPlayer Engine can use directly. This method minimizes the code between PVPlayer
Engine and the media device interface, but requires a new PVMF node to be created. The second
method is to interface the media device to PV’s Media I/O interface. By encapsulating the media device in
PV Media IO interface, PVPlayer Engine can use the PVMF node that interfaces PV Media 10 to output
the media data. PV’s Media I/O interface is less complex than PVMF node and specific for media output,
but this method adds layers and code. The diagram below shows the two methods in relation to PVPlayer
Engine. For more information on PV Media IO interface, please refer to the PV Media 1O documents.

pvPlayer Engine pvPlayer Engine

Platform-specific Output

Media PVMF Node PV Media /O PVMF Node

PV Media /O to Output
Media Device Interface
Wrapper

Output Media Device
Interface

Output Media Device
Interface

Figure 6: Media Output to Node and Media 10

4.5 Porting to a New Platform

Porting for PVPlayer SDK is having PVPlayer SDK working on a particular platform. Since PVPlayer
engine is strictly OSCL-based, porting for the engine would be accomplished by adding support for
particular platform in OSCL.

Porting rest of PVPlayer SDK would depend on the configuration of the SDK. If the configuration is all
OSCL-based including nodes and data sources/sinks, porting would be accomplished by porting OSCL. If
the configuration requires usage of platform specific components like hardware accelerators and

WI-Apple1695937

(e]

upen st ; .

-R PVPlayer SDK Developer's Guide
: OHA 1.0, rev. 1

particular decoder interfaces, a new node would need to be created to encapsulate the use and register
the new node for the PVPlayer engine to use. If the data source and/or sink are platform specific, new
PVPlayer data source/sinks needs to be created to encapsulate the platform dependency and the user of
the PVPlayer engine (adaptation layer or application) would need to pass it in.

WI-Apple1695938

PVP

DK Developer's Guide
OHA 1.0, rev. 1

5 PVMF Nodes for Player

This section gives a brief description of PVMF nodes used by PVPlayer engine. Only PVMF nodes based
on OSCL and PVMF components are covered. No platform specific PVMF node is covered. For more
detailed information on a particular node (one below or platform specific one), please refer to the
documentation for that node.

5.1 Data Sink Nodes

Data sink node are the end points of the data-flow graph and takes the media data out of PVPlayer
engine.

5.1.1 PVMFMediaOutputNode

PVMFMediaOutputNode is a wrapper node around the PV media I/O interface to output data. The node
translates node commands and incoming media data to appropriate media 1/O actions and handles media
I/0 events. Using PVYMFMediaOutputNode allows encapsulation of platform and device specific output
interface with PV media I/O interface.

5.1.2 PVMFFileOutputNode

PVMFFileOutputNode accesses the file directly using OSCL file I/O to write media data coming in via the
port. The node has some capability to understand format type and to write out data appropriately for the
specified format type (AMR file header for AMR IETF format).

WI-Apple1695939

PVP eloper's Guide

OHA 1.0, rev. 1

6 Temporal Synchronization

The PVPlayer SDK is required to render all the multimedia data that it handles in a temporally
synchronized manner also known as “AV sync”. To do so, PVPlayer SDK relies on information from a
playback clock, timestamps from the media data, and optionally timing information from data sinks that
accept media data in a specified rate (e.g. audio device set at fixed sampling rate). PvPlayer SDK’s
temporal synchronization also allows the playback speed to be adjusted and this feature would also be
described in this section.

6.1 Clock in PVPlayer SDK

The PVPlayer SDK uses a clock in PVPlayer engine to determine the temporal playback rate. The
playback clock is based on OSCL clock which provides a control to set, start, pause, stop, and adjust the
clock. OSCL clock also allows the timebase to use for the clock source to be specified by PVPlayer
engine. For more information OSCL clock, please refer to its design document.

PvPlayer engine creates an instance of OSCL clock to keep track of the playback clock. PvPlayer engine
is responsible for changing the state of the clock due to changes in playback operation (start, pause,
resume, stop).

The playback clock used in PVPlayer engine is non-decreasing during playback. This means the playback
clock never goes back even if the playback repositions to an earlier time. The playback clock does not
represent the actual position in the clip which is called normal playback time or NPT. To return NPT to the
user of PVPlayer SDK, PVPlayer engine always maintains a mapping between NPT and playback clock
time.

A reference to this clock is passed to data sinks which require a clock to perform synchronization of
media data. Description of how the data sinks use the clock for synchronization is presented next.

WI-Apple1695940

