Apple, Inc. v. Motorola, Inc. et al

—pen PVP eveloper's Guide
OHA 1.0, rev. 1
performer Performer. Typically found The value is a null-terminated string (either
in music content. narrow or wide character). There is usually
also a language code.
playlist Playlist name Value is typically a null-terminated string (either
narrow or wide character).
podcast-url Podcast URL The value is a null-terminated string (either

narrow or wide character).

purchase-date

Content purchase date

The date value will be returned as a string
represented in a subset of ISO 8601 format.
For example, “’yyyy”, “yyyy-mm”, etc where
yyyy represents the year and mm the month.
See the ID3 specification or reference [2] for

other possible examples and more details.

rating Rating information There may be several different
Src Clip source / filename Value is typically a null-terminated string (either
narrow or wide character).
title Title or name of the clip Value is typically a null-terminated string (either
narrow or wide character).
num-tracks The number of tracks in the | Value is typically a 32-bit unsigned integer
clip
version Software version of the Value is typically a null-terminated string (either
authoring software narrow or wide character).
year Year of Value is typically a 32-bit unsigned integer

recording/performance.
Typically applies to music
files.

10.5.1 Limiting the Metadata Value Size

In certain cases it may be desirable to specify the maximum size of the metadata value that is being
requested. This way the application can have some control over the amount of memory that will be used
to return the metadata value. Since the metadata may include items like graphics (e.g., album art, etc),
which can be fairly large, it is important for applications to have enough control to avoid out of memory
conditions in memory-constrained situations.

The maxsize parameter in the request key string is used to specify the maximum size, in bytes, that
should be returned for the requested value. It is an optional parameter that may be applied to any
variable-length metadata value (i.e., strings, arrays, etc). The maxsize parameter does not apply to
values that are returned as fixed-sized elements of the PvmiKvp union (e.g., int32, uint8, etc). The
reason that it only applies to the variable-length values is that the PvmiKvp structure needs to be provided
in every case to return the key value and report the required maximum size. Also the intention of the
maxsize parameter is mainly to provide a way to deal with large metadata values. In case of metadata
values that are strings, maxsize parameter will be interpreted to mean maximum size, in number of
characters not including the NULL terminator, and not maximum size, in bytes.

With a maxsize parameter defined, there is the question of the behavior in the case that the maxsize is
exceeded. Eitherthe value could be returned truncated to the specified size or the information about the
required size could be returned without the actual value (i.e., no space would be allocated to hold the
value and no portion of the value be returned). Truncation is reasonable where an incomplete part of the

WI-Apple1695960

Dockets.Justia.com

Doc. 244 Att. 3

http://dockets.justia.com/docket/wisconsin/wiwdc/3:2010cv00662/29072/
http://docs.justia.com/cases/federal/district-courts/wisconsin/wiwdc/3:2010cv00662/29072/244/3.html
http://dockets.justia.com/

N

PVPlayer

J

L

DK Developer's Guide
OHA 1.0, rev. 1

value is potentially meaningful and useful (e.g., a string value). For cases where the value is really only
useful when it can be returned in its entirety (e.g., a graphic image), then it does not make sense to
truncate the value. Instead the request should be answered by indicating the required amount of memory
to retrieve the complete value. Since the majority of the common metadata values are strings, the default
behavior in the case where the value size exceeds the specified maxsize parameter will be to return the
truncated value. However, an optional boolean parameter called truncate can be specified to indicate
the desired truncation behavior. For example,

title;maxsize=100;truncate=false

indicates that the returned title value should have a max size of 100 bytes, and if the actual size exceeds
that length, only the information about the required size should be returned (i.e., no truncation should
happen). By contrast, the request

title;maxsize=100;truncate=true

differs by the fact that the title value should be truncated to at most 100 bytes. Note that the request with

title;maxsize=100

is equivalent to the one with the truncate=true parameter since truncation is the default behavior. Note
that strings consisting of multibyte characters (e.g., UCS-2, UTF-8, etc) will be truncated to a
whole number of characters that is less than or equal to the specified number of bytes.

If the metadata value is larger than the specified maxsize, the required number of bytes is returned in the
regsize parameter. The required size is returned regardless of whether the value is truncated and
returned or not. For example, if the request for the title is truncated at 100 bytes but the actual size of the
string is 137, then the returned key string would look like:

title;valtype=wchar*;reqgsize=137

The regsize parameter is only included in cases where the entire value is not returned (i.e., either when it
was truncated or no part of value is returned).

10.5.2 Duration

The duration value is typically returned as an integer value and may include an optional parameter that
specifies a timescale. If no timescale is specified, then the default is milliseconds. Some examples
include
duration;valtype=uint32 (the duration is an integer representing milliseconds)
duration;valtype=uint32;timescale=8000 (the duration is an integer representing the
duration in a timescale of 8 kHz)
duration;valtype=char* (the duration is retumed as the string “unknown”).

The duration is not stored explicitly in all the supported file formats. File formats like mpeg4 store the
duration value explicitly so it is a simple and quick matter to extract the value. Other simpler file formats
like mp3, aac, and amr consist of a concatenation of encoded frames without the duration explicitly stored
anywhere. Therefore, the duration must be determined by parsing the entire file, which can be
computationally expensive and time-consuming in these cases. By default, the duration will be returned
as unknown in these cases initially and an event will be sent once the duration has been determined as a

WI-Apple1695961

2r SDK Developer's Guide
OHA 1.0, rev. 1

part of normal playback. However, it is possible to request that the duration be computed by including an
additional option in request key. The form of the request key would look like:

duration;compute=true
to request that the duration is computed if necessary and possible.

The duration-from-metadata key is for situations where the duration is provided as an optional part of
metadata and is not guaranteed or even necessarily reliable for the content type. For content that
duration derived from metadata in a consistent and reliable way, the duration metadata key will be used.
This can be queried via

duration-from—metadata;valtype=uint32

10.5.3 Genre

The genre value is often stored as an integer that corresponds to one of the values defined by ID3v1. In
these situations, the returned value would be an integer and the returned key would include a qualifying
parameter to indicate that it should be interpreted as an ID3v1 genre code as follows:

genre;valtype=uint32; format=id3vl

In the case of ID3v2, the classification may consist of a mixture of the ID3v1 code and an arbitrary string.
In this case, the genre would be returned as a string with id3v2 indicated in the format as follows:

genre;valtype=wchar*; format=id3v2.

In some cases the genre may simply be a free-form string. In those cases the format parameter would
not be provided because there is no special way of interpreting the value other than as a string. For
example, it the key string would like the following:

genre;valtype=wchar*.
10.5.4 Graphic

The graphic value may be either a reference to an external image (i.e., stored separately from the media
source) through a URL string or the image itself. In the case of the external reference, the information
would be returned as a URL string. For example,

graphic;valtype=char*
is an example of a key string for a external reference graphic where the character string is a URL. If the
graphic is returned as a character string with no other format specification, then it should be interpreted as
a URL.

A popular format for directly holding the image within the media file is the ID3v2 attached picture format
(i.e., the APIC frame). This same format is also used within ASF files for the WM/Picture metadata value.
The format parameter for the key string indicates that the value is in the APIC format as follows:

graphic; format=APIC;valtype=ksv

WI-Apple1695962

PVP eveloper's Guide

OHA 1.0, rev. 1

The format includes the following information:

A MIME type string describing the format of the image data
e A picture type code that classifies the content of the image
e A text description

¢ The binary picture data.

The picture type is one byte with values defined in the ID3v2 specification [3]. For convenience, the
current table at the time this document was produced is included below, but the reference, [3], should
serve as the official source of the defined values.

Code (in hex) Description Code (in hex) Description
$00 Other $0B Composer
301 32x32 pixels 'file icon' (PNG $0cC Lyricist/text writer
only)
$02 Other file icon $0D Recording Location
$03 Cover (front) $0E During recording
$04 Cover (back) $0F During performance
$05 Leaflet page $10 Movie/video screen capture
306 Media (e.g., label side of CD) $11 A bright coloured fish
$07 Lead artist/lead $12 lllustration
performer/soloist
$08 Artist/performer $13 Band/artist logotype
$09 Conductor $14 Publisher/Studio logotype
$0A Band/Orchestra

In general, there can be an arbitrary number of APIC frames associated with a file, but there may only be
one instance of type $01 and one instance of type $02 according to the specification. The key string
syntax for these

It may be desirable to request information on the number of APIC frames in the file before actually
requesting them. This information can be requested by using the key string

graphic/num-frames; format=APIC

Since there can be multiple frames in the file it may be desirable to obtain the descriptions and select the
frame(s) of interest before actually requesting image data. The following key string can be used to
request the multiple entries.

graphic/description; format=APIC;index=X..Y

where the values X and Y refer to the start and end index values of the requested frames (in the range 0
to num-frames-1). The structure returned is the same as the one used for the full APIC information
except the binary image data buffer is empty (i.e., the description string, text encoding, mime type, and
picture type, and the size of the binary image data are returned). To request the full value including the
binary image data, the request key string would simply use ‘graphic’ string as in this example:

graphic; format=APIC;index=X.

WI-Apple1695963

2r SDK Developer's Guide
OHA 1.0, rev. 1

It is also possible to restrict the query to a specific picture type by adding the “pict-type” parameter to the
key string. In that case, the returned values are narrowed to the set of the frames that have the matching
picture type. For example, the key string

graphic/num-frames; format=APIC;pict-type=0F

specifies that the value returned should correspond to the number of frames with picture type equal to OF.
If the pict-type parameter is applied to a request with an index parameter, then the range of valid index
values is restricted to lie between 0 and num-frames-1, where num-frames is the number of frames with
that picture type. For example, to get the second graphic value with picture type OF, the request might
look like

graphic; format=APIC;pict-type=0F;index=1.

The maxsize parameter is another common key string parameter that can be applied to the graphic value
request as described in Section 10.5.1. Refer to the API documentation for details of the structure that is
returned for the APIC format.

All images by default are considered storable/savable. However there could be cases wherein the content
provided might mark some of the images as not storable. In those cases a “not-storable” string would be
added to the returned key string. For example key string for a non-storable image would look like

graphic; format=API;index=1;not-storable

10.6 Track-level Information

Certain file formats, such as mpeg4, as well as streamed presentations can contain multiple media
streams or tracks. The track-level information provides details at the individual media level on such things
as format, sample rate, bitrate, etc. The mechanism for accessing track information will apply for all clips
regardless of how many tracks are included. For simple file formats, there will only be one track while
others may include an arbitrary number. The metadata key, “num-tracks,” will return the number of tracks
within the clip. Information for individual tracks is accessed or qualified in the returned value with the
“index” parameter, which has a range from 0 to (num-tracks — 1). For example:

track-info/type;index=0;valtype=char*

would be one possible key string for the track-level type information of the first track (i.e., index 0).

10.6.1 Compact Representation of Ranges

When querying for a list of available keys from a file source with multiple tracks, it will have a set of keys
for track-level information where the only difference is the index parameter. One possible way of
returning the set of keys is to simply include them all individually in the list (e.g., track-
info/type;index=0, track-info/type;index=1, track-info/type;index=2, track-
info/type;index=n-1). However, a more compact representation is allowed for the index using a
format for expressing a range. For example, the string

track-info/type;index=0..8

represents a set of 9 keys, 0 through 8, in a single string using the range representation for the index.

WI-Apple1695964

PVP DK Developer's Guide

OHA 1.0, rev. 1

10.6.2 General Information

The table below lists general track-level information that would be available for any track.

Key string

Description

track-info/type

The type information for the media stream typically expressed as a
MIME type.

track-info/track-id

The track-id is the identifier specified within the file if any. It may
be different than the “index” parameter, which is simply used to
iterate through the track-info metadata.

track-info/sample-rate

The sample-rate of the media in samples per second. Applicable
to audio tracks. Provides the sampling rate of audio.

track-info/bit-rate

The bit-rate in bits-per-second.

track-info/duration

The track-level duration. The format is the same as the clip-level
durations.

track-info/num-samples

The number of samples in the track.

track-info/selected

Boolean value that signals whether the track specified by the index
is selected for playback or not.

track-info/frame-rate

Applicable only to video tracks. Provides an approximate
estimate of the video frame rate.

track-info/codec-name

Value is typically a null-terminated string (either narrow or wide
character).

track-info/codec-description

Value is typically a null-terminated string (either narrow or wide
character).

track-info/codec-specific-info

The uint8 pointer provides the codec specific information.

track-info/track-number

The track-number is the identifier specified within the file if any.
Typically found in music files and can be different from both
“index” and “track-id” metadata fields.

track-info/max-bitrate

Maximum bit-rate in bits-per-second.

10.6.3 Format Specific Information

Some track-level information is specific to the type of media. Below are the defined video and audio

track-level information.

Video-specific track-level information

track-info/video/format

Detailed video format information (e.g., profile and
level information for mpeg4)

track-info/video/height

Height of the video frame.

track-info/video/width

Width of the video frame.

track-info/video/display-height

Display height of the video frame. This need not be
same as the decode height.

track-info/video/display-width

Display width of the video frame. This need not be
same as the decode width.

WI-Apple1695965

PVP eveloper's Guide

OHA 1.0, rev. 1

Audio-specific track-level information

track-info/audio/format Detailed audio format information

track-info/audio/channels Number of audio channels (e.g., 1 = mono, 2 = stereo,
etc).

track-info/audio/bits-per-sample Mainly relevant for PCM audio files.

10.7 Codec Level Format Specific Information

The codecs may also expose similar types of information, which are actually extracted from the bitstream.
The codec-level information can be more reliable than the track-level information at times (e.g., in some
files the height and width information has been found to be incorrect). The format-specific codec-level
information is shown below

Video-specific codec-level information

codec-info/video/format Detailed video format information (e.g., profile and
level information for mpeg4)

codec-info/video/height Height of the video frame.

codec-info/video/width Width of the video frame.

Audio-specific codec-level information

codec-info/audio/format Detailed audio format information

codec-info/audio/channels Number of audio channels (e.g., 1 = mono, 2 = stereo,
etc).

codec-info/audio/sample-rate The sample-rate of the audio data in samples per
second. For PCM audio, it represents the frequency in
hertz.

codec-info/audio/bits-per-sample Bits-per-sample of the output PCM

10.8 Language Codes

3GPP Release 6 defines a number of metadata elements as part of the asset information specified in the
document TS 26.244v6.2.0. These metadata strings can be represented in different languages, so there
is a language code associated with each entry to encode the language of the string. The language codes
are stored as packed ISO-639-2/T language codes, which are basically 3 character codes assigned to
each language. The table below lists a just a few examples of the languages and the associated
language code, please refer to a reference on ISO-639-2/T for a complete list such [1]:

3-Letter Language Code Description
eng English
fre/fra French
ger/deu German

WI-Apple1695966

2r SDK Developer's Guide
OHA 1.0, rev. 1

If the language code exists it will be returned in the is0-639-2-lang parameter. Otherwise English should
be assumed. It is expected that content may contain the same metadata in multiple languages, so the
language parameter in the returned key string can be used to select the value in the appropriate language
based on the user preferences. An example of a key string with a language code is

track-info/type;index=0;valtype-wchar*;iso-639-2-lang=ger

10.9 DRM Related Metadata

There are a number of metadata values related to license information for content protected with some
form of digital rights management (DRM). For a particular piece of content, not all the values in the table
will be available. This set of metadata provides information that describes the issuer of the license, which
operations are allowed, when it expires, etc. Note that certain time-based licenses may have only start
times, only expiration times, or both start and expiration times. Values will only be returned if the license
has a corresponding value for that key string, so for example, if the license only has a start time then
queries for the license-expiry would not return a value.

WI-Apple1695967

WI-Apple1695968

- 86 40 9p ebed -
(asua9l| pajunoo
8y} Uo Jwi| ou) pajwijun e
sadA)
pajejaJ-aLwl} JO auo pue
JUNOD JO UONBUIQUIODO B IO ®
paseq junoo e
(asn
1SJ1} 90UIS BWI JO JUnowe
pauwun, uieuas e) uwmmhm memmmw ®
‘. Junoo-uoljelnp, ‘. Junog-awi, ‘ JuUnoo, ‘. uoneinp, ‘oW, e :
1Els Ue Sey) paseq owi} e
:SUI0J SUIMOT[OJ o) @ :salo0baleo
10 Aue ayel IIm 1ey) Bulls B 8q pihom pauinjal anjeA Buimol|oy ojul ||e) sadA] asuasol] adAj-asuaoi/wp
"‘AleSsa0au Uaym asusdl| mau e alinboe
Ajleonewoine o} 1dwale ue aq ||Im
'2dA} |00q 8y} Ul pauinjal anjeA | aJayl Jayiaym Bunesipul anjeA as|el/an alinboe-oine/wip
EEENERESER a|gejieAe
‘adA] |00q 8y} ul pauinjal anjeA ayj Jaylaym Buneolipul anjeA asjej/ant | -9SUa9I|-SyWIp
‘mainald ‘91nDaxa ‘aAesS ‘peojumop ‘san|eA uoissiwiad
‘quud ‘dois ‘spiemyoeq ¥o9S ‘piemio) ¥99S ‘awinsay ‘eshed ‘Aeld a|qissod ay; yum Aedie uq payoed e sl
:9pnjouUlI SanjeA 9|qISSOd | anjeA pauinial 8y ‘usu09 ay) jo abesn
‘Aelie 1q payoed paAoidde syl uo uoew.Ioul S8PIACIH abesn-pamoj|e/uLp
"adf} .1eyo ayj ul pauinjal anjep "JaNSSI 9suadl| 84} JO |4 8y} SI SIyL 19NSSI-9SUaDI|/WIP
‘(as|e)) payoajoidun
-ANYQ Jo (enuy) pejosioud -NHQ
S| JUSJUOD By} JaYlaym sajeolpul {pauinial
anjeA JI JaAamoy ‘pajosloldun si Jusuoo
‘papinosd uaym adA} 100q SI anjep 8y} 1ey} S91eoIpul aN|BA JO 90UasSqQy pajoajoid-sywp
S9JON uonduoasaqg buiis Aoy

- 8640 /v 8bed -

"(.Z,) 101eubisap 01N [e10ads e yim “(SuilL
|eSIaAIUN PB)BUIPIO0D) D1 N Ul passaidxs aje sawli] @
:S]9s110 auoz swi Buipuey Jo skem om) saulap sjyoid siy L

(Ww:yy—Jo ww:yy+ Jo 7) Jojeubisep auoz swiy = qzL
puo09as B Jo uonoely [ewiosp e Bunuasaidal sybip alow Josuo = S
(6G ybnoiyl o) Puooas Jo subIp om} = ss
(6S ybnouyy 0o) snuiw jo subip om} = wWw
(pamojle LON wd/we) (gz ubnoiyy o) Jnoy jo subip om} = Uy
(1€ ybnouyy Lo) Yuow jo Aep ubip-omy = AQ
(-o1e ‘Aenuer=10) yjuow ybBIp-omM} = AN
Jeak UBIP-1N0J = AAAA (818ym
(00:10+5%°0€:02:61191-20-266)
“0'9) dzLs'ss:ww:yylaa-NIN-AAAA :puooas
© JO UOIOkJ) [BWIDAP B pUB SPU023s ‘sajnuiw ‘sinoy shid ajep ajejdwo)d

(00:10+0¢€:02:61191-20-2661 “0'8) dzLss:ww:yyLaa
-ININ-FAAAA :SPUODSS pue salnuiw ‘sinoy snjd aep aj9|dwo)

(00:10+02:61191-20-2661
“B'9) QZLWW:Yyylaa-ININ-AAAA :Sainuiw pue sinoy snid ajep a19|1dwo)
(91-20-2661 "'0'8) AQ-ININ-AAAA :81ep dje|dwo)
(£0-2661 “"0°8) ININ-AAAA “UluOW pue Jes\
(2661 “B'9) AAAA BBA
1098 OSI Ul payioads se ‘Juswa|d
awn ayy jo Buluuibaq ayy a1e21pul 01 Buls sy} ui Ajjetay|
sieadde], a9y} 18yl 810N ‘uonenjound siyl Ajjoexa yuim e
‘uasaid aqg 1snw alay
umoys sjusuodwod ay} Aj}oex3 'SMOJ|0} S Sl jewlojayl e
jewuojawil | 098 OSI Ul le sawi} pus pue Uejs |y

[BAJa)UI PasSUa9I| 8y} Joj awi) Buiueys sy

HelS-asuaolj/wip

ZSWUIN e Se pauinjal sl anjep

Buiulewsal syuno)

SIUNOd-Wnu/wWIp

uadp

WI-Apple1695969

- 86 40 8y ebed -

‘2dA} |00q 8yj Ul pauinial anjep

"PaMO0| pIEMIO) SI JUSIU0D
ay} Jaylaym Buneoipui anjeA asjej/ani]

pPa)20|-pJeMIO]-SI/WIP

‘play yibua| day
By} Ul 8q ||IM S8JAQ JO Jaquinu 8yl “,QlUIn B SB pauJnjal aq ||IM anjeA ayL

‘PUBLILLIOD asu8dialinboy
ay} Aq paJinbal ejep anbedo uigjuo9 |Im
pIa siy} ‘paloadxa si uonisinboe asuaol|

(l1e-8y}-18A0) 108lIp 8JaYM SaSED U|

ejep-e|p/wJp

'210)s asua9l| Jenoiled e
10} abeiols ayj 1yl sawiy sy} dn 6unjooj Joj noddns ou sI a1ayl JI paiamsue
aq Jou |Im Aa) sIy} o) Auanb v “jewlo) awiy ayy Jo uonduosap snolnald seg

"9J0]S 9SUddI| 8yl
0} pappe Sem asuadl| 8y} Usym awly ay |

aw)
-910)S-9sUoIj/WIp

"ZSIUIN B SB paulnlal aq [[IM anjeA ay L

"SpU02as Jo Jagwinu
Ul paoads asua9l| ay) Jo uoneing

uoneInp/wIp

"W} pua panioads ou SI alayl JI palamsue
aq jou |im A8y siyyJoy Alenb v “jewuoy awiy ayj jo uonduosap snolnaid aag

‘|eAJa]UI pasua9l| Jo awi) pug

Audxa-asuaol/wip

" MoU, se pajaidiaiul aq pjnoys anjeA ay} Uay} 1as 10U SI aw Yels ayy J|

"JUB)JSUI swes ay) 0} spuodsaliod
Z0g:S1:€L1S0-L1-¥661 "SWIL pJepuels uisiseq SN ‘We 0g:G1:8 ‘¥661
‘G JOqUIDAON 0] Spuodsaliod 00:S0-0€:S1:80150-L L-¥661 :ojdwexs Jo4

"OLN PUIYSq SSjNUIL Wi,
pue sinoy Yy, S! Yolym auoz awi) [B20| B Sash awiye1ep
U} 1ey) Sajeslpul W:yy-, J0 J9SHO dUO0Z dWil} ¥ “O1N
O peaye sejnuiw Ww, pue sinoy ,yy, s Yolym auoz
awl] |BO0| B Sasn awWly/a1ep 8yl 1Byl Sa1eoIpul WW:Yy+,
10 19SJJ0 SUOZ W} Y "S9INUIW pue SINoY Ul }9SPo auoz

aw} e ypm 1ay)ebo) ‘ew [BD0] Ul pessaidxs ale sawl] @

uadp

WI-Apple1695970

2r SDK Developer's Guide
OHA 1.0, rev. 1

10.10 Access to Other Metadata

Depending on the content format being accessed and the metadata storage scheme, there may be
additional metadata entries that do not fall within the list of values described above. This situation is
especially true for extensible metadata schemes like ID3v2. The parser used by the engine may not
necessarily understand how to interpret the data in the metadata frame, but it can provide the raw data
back to application for it to interpret. The form of the keystrings for requesting ID3v2 frames is:

id3v2/<four-character frame ID>

where <four-character frame ID> is the four-character code defined by the ID3 specification. If the key
string is present, the retumed value will include the ID3 version, the frame ID, frame size, frame flags, and
the raw data contained in the frame. See the APl documents for the exact definition of the id3v2 frame
structure. This id3v2 frame structure will be returned in the key-specific value field of the returned key-
value pair structure.

10.11 Receiving Metadata from Informational Event Callback

For server side playlist streaming sessions, PVPlayer engine also sends an unsolicited information event
— PVMFInfoPlayListClipTransition. A playlist contains several playlist elements. When the client gets
notified about the transition to a new playlist element, the player engine sends this event. It should NOT
be used as an accurate indication of the transition point on Ul because of the delay like jitter etc. This
event also carries the extra meta data about the next playlist element. The event data is a
PVMFRTSPClientEngineNodePlaylistinfoType struct:

typedef struct
{
uint32 iPlaylistUrlLen;
char *iPlaylistUrlPtr;
uint32 iPlaylistIndex;
uint32 iPlaylistOffsetSec;
uint32 iPlaylistOffsetMillsec;

uint32 iPlaylistNPTSec;
uint32 iPlaylistNPTMillsec;

//max 256
uint32 iPlaylistMediaNameLen;
char iPlaylistMediaNamePtr[256];

//max 512

uint32 iPlaylistUserDatalen;

char iPlaylistUserDataPtr[512];
}PVMFRTSPClientEngineNodePlaylistInfoType;

WI-Apple1695971

Open
-RE! PVPlayer SDK Developer's Guide
OHA 1.0, rev. 1

10.12 Metadata Retrieval Usage Example

To illustrate how metadata list is generated and returned to the user of PVPlayer SDK and how metadata
value is returned, a sequence diagram between the user of PVPlayer SDK, PVPlayer engine, and two
PVMF nodes that support metadata retrieval is shown below.

WI-Apple1695972

Open_ _

PVPlayer SDK Developer's Guide
OHA 1.0, rev.

pvPlayer SDK User

pvPlayer Engine

pvPlayer engine requests each node with
metadata to return its metadata key list

pvPlayer engine adds

metadata key list to the engine one

pvPlayer engine adds node 2's
metadata key list to the engine one

User wants the list of all
available metadata keys

GetMetadataKey()

pvPlayer engine returns its metadata key list

CommandCompleted()

User wants a particular set of metadata
values from the returned key list.

GetMetadataValue()

Engine parses the requested values
from the key list and sends the
appropriate requests to the nodes which
have the metadata values.

CommandCompleted()

PVMF Node 1 PVMF Node 2
\\
GetNodeMetadataKey()
NodeCommandCompleted()
T S i S e
N
node 1's
GetNodeMetadataKey()
|
NodeCommandCompleted()
e ——— R L B e
GetNodeMetadataValue()
GetNodeMetadataValue()
NodeCommandCompleted()
R S e e
NodeCommandCompleted()

WI-Apple1695973

1

PVP eveloper's Guide

OHA 1.0, rev. 1

10.13 Supported Key Strings in Select PVMF Nodes

The table below lists the supported metadata key strings in several PVMF nodes. The key string list is the
comprehensive list, but actual key list could be a subset depending on the information available in the
data source.

PVMF Node Supported Key Strings
PVMFMP4FFParserNode author

title

description

rating

copyright

version

date

duration

num-tracks
track-info/type
track-info/track-id
track-info/duration
track-info/bit-rate
track-info/audio/format
track-info/video/format
track-info/video/width
track-info/video/height
track-info/sample-rate
PVMFMP3FFParserNode title

artist

album

year

comment

copyright

genre

tracknumber
num-tracks

duration
track-info/bit-rate
track-info/sample-rate
track-info/audio/format
track-info/audio/channels
PVMFAACFFParserNode title

artist

album

year

comment

copyright

genre

tracknumber
num-tracks

duration
track-info/bit-rate

WI-Apple1695974

track-info/sample-rate
track-info/audio/format

PVMFAMRFFParserNode

duration

num-tracks
track-info/bit-rate
track-info/audio/format

PVMFWAVFFParserNode

duration

num-tracks
track-info/bit-rate
track-info/sample-rate
track-info/audio/format
track-info/audio/channels

track-info/audio/bits-per-sample

PVMFVideoDecNode

codec-info/video/format
codec-info/video/width
codec-info/video/height

PVMFAVCDecNode

codec-info/video/format
codec-info/video/width
codec-info/video/height

PVMFAACDecNode

codec-info/audio/format
codec-info/audio/channels
codec-info/audio/sample-rate

PVMFWMADecNode

codec-info/audio/format
codec-info/audio/channels
codec-info/audio/sample-rate

PVMFWMVDecNode

codec-info/video/format
codec-info/video/width
codec-info/video/height

(Developer's Guide

OHA 1.0, rev. 1

WI-Apple1695975

PVP

DK Developer's Guide
OHA 1.0, rev. 1

11 Playback Position

PVPlayer engine provides the application with methods to obtain the current playback position of the
media being played. The application can use the playback position data as strictly informational data to
display to the user or to make decisions during media playback (e.g. pause playback 5 seconds into
playback).

The position can be retrieved by having the application make API calls or PVPlayer engine can send the
playback position periodically via the unsolicited informational event callback. For both methods, the
application can change the playback position units from the default of millisecond time unit.

11.1 Retrieve Playback Position Using API Call

PVPlayer SDK provides two API to retrieve the current playback position from PVPlayer engine:
GetCurrentPosition() and GetCurrentPositionSync(). Both APIs perform the same function but the latter
completes the request synchronously instead of asynchronously. In both APIs, the user must provide a
reference to a PVPPlaybackPosition object which is an input/output parameter. The input parameter
portion is the iPosUnit field which allows the user to request the units to use for the playback position. The
default units is in milliseconds but the user can request the position in other time units such as seconds,
hours, and SMPTE time code, or non-time units such as percentage of whole clip, sample number, and
offset from beginning of the file in bytes. Availability of playback position in non-time units would depend
on the support from the underlying nodes and source media being used. If non-time units is not
supported, these APIs will return with PVMFErNotSupported error code.

11.2 Receive Playback Position from Informational Event

PVPlayer engine also sends the current playback position periodically as an unsolicited informational
event with PVMFInfoPositionStatus event code and player specific event code of
PVPlayerinfoPlaybackPositionStatus (=8193) in PVPlayerErrorinfoEventTypesUUID event code space
(=0x46fcabac, 0x5b57, 0x4cc2, 0x82, 0xc3, 0x03, 0x10, 0x60, 0xb7, Oxb5, 0x98). The position value is
stored in the local data buffer of the informational event. The application is responsible for “listening” for
this event in the informational event callback handler if it wants to obtain the current playback position by
this method.

The position units and the time length of the reporting period can be queried and modified via the
capability-and-configuration extension interface of PVPlayer engine. The default settings are milliseconds
for playback position units and 1000 milliseconds for the reporting period. For more information on how to
query and modify these settings via the capability-and-configuration interface, refer to the Capability
Query and Configuring Settings section. Support for non-time position units would change based on the
underlying nodes and source media being used. Therefore, if support for non-time position units becomes
unavailable, PVPlayer engine will automatically change to the default of milliseconds.

WI-Apple1695976

2r SDK Developer's Guide
OHA 1.0, rev. 1

12 Frame and Metadata Utility

A common use-case for player functionality involves retrieving the metadata information along with a
frame from the video stream to be used as a thumbnail or other still image representation of the clip. For
example there may be gallery view of the available content stored on the filesystem, which is presented to
the user as a still image frame from each clip along with some metadata information such as title, author,
etc. The player engine APIs can certainly be used directly to obtain the necessary information. However
the PVFrameAndMetadataUtility simplifies the task for the application by hiding some of the interaction
with the player engine for this use-case.

12.1 Creating and Deleting the Utility

Instances of the PVFrameAndMetadataUltility are created and deleted using static member functions of
the factory class. The factory function used to produce a new instance of the utility class takes a MIME
string argument, which specifies the desired output format for the video frame, as well as references to
observer classes for receiving callbacks from the utility. Internally, the utility creates an instance of the
player engine. The diagrams below show sequences for creating and deleting the utility instance.

The format of the video frame that will be returned in the GetFrame calls is specified as an argument to
the factory function when creating an instance of the utility class. A MIME string is used to specify
whether the frame should be YUV420, RGB16, etc. The header file pvmf_format_types.h contains a
listing of many of the common MIME strings for the different video frame formats. If the output format
cannot be supported for a given input source that is specified later, then an error will be returned from the
GetFrame call.

Application PVFrameAndMetadataFactory PVFrameAndMetadataUtility PVPlayerFactory PVPlayerEngine

CreateFrameAndMetadataUtility ()
i

New()

CreatePlayer()

A

New()
_4.
return PVPlayerinterface* t

4 : i)
return PVFrameAndMetadataUtility* PVPlayerEngine object ﬁ

A N P L AR RRL KIS - (L

is instantiated

return PVFrameAndMetadatalnterface* :
e o) 11 |
i
|

B

Figure 13: Create the Utility

WI-Apple1695977

PVPlayer SDK Developer's Guide
OHA 1.0, rev. 1

licati PVE r PVFrameAndMetadataUtility | | PVPlayerFactory PVPlayerEngine
1 | |] 1
1 | 1 1 I
1 | | I 1
DeleteFrameAndMetadataUtility() i i i
1 a I 1 1
] ~PVFrameAndMetadataUtility() | i H
} ! I 1
i DeletePlayer() i :
1 » :
1 1 delete()]
: 1 1
"
i | '
! ! PVPlayerEngine object
1
! return true : is deletad
e i i
1 I
1 1

Figure 14: Delete the Utility

12.2 Options for Specifying the Desired Frame

The GetFrame() APl is used to retrieve a frame specified in the frame selector argument. There are a few
options for specifying the desired frame:

e the exact frame index with 0 corresponding to the first frame,

e the time offset of the frame,

These two options are used to select a specific frame based on either the frame index or the time offset of
the frame. An example where this type of specification might be used is for creation of a thumbnail image
from the first frame. The PVFrameSelector data type is used to hold the information on the desired frame.

In many cases, the first frame of the clip may not contain a meaningful image (e.g., the first frame may be
a black frame). Therefore, another alternative is to let the Utility use an internal algorithm to autodetect a
frame of interest. To achieve this, the user of the utility has to set the source context data with the
BITMASK_PVMF_SOURCE_INTENT_THUMBNAILS intent. The following is an example of how it
should be used.

// create the source context data for autodetection of thumbnails
iSourceContextData = new PVMFSourceContextData();
iSourceContextData->EnableCommonSourceContext();
//set the intent to thumbnails
iSourceContextData->CommonData()->ilntent =

BITMASK PVMF SOURCE INTENT THUMBNAILS;

iDataSource->SetDataSourceContextData((OsclAny*)iSourceContextData);

iDataSource->SetDataSourceURL(wFileName);

iDataSource->SetDataSourceFormatType(iFileType);

OSCL_TRY (error, iCurrentCmdId=iFrameMetadataUtil->AddDataSource(*iDataSource,
(OsclAny*)&iContextObject));

WI-Apple1695978

PVP eveloper's Guide

OHA 1.0, rev. 1

12.3 Set Timeout for Frame Retrieval

The default timeout set for the frame retrieval is 30 seconds. The user of the utility has the option to alter
the value of this timeout. This can be achieved by querying for the extension interface
PvmiCapabilityAndConfig via the APl Queryinterface(). The pointer to the interface obtained provides the
flexibility to the user to set the timeout using the following KVP:

x-pvmf/fmu/timeout-frameretrieval-in-seconds;valtype=uint32

12.4 Usage Sequence

The main sequence for interfacing with the PVFrameAndMetadataUltility is shown in the figure below. As
the diagram shows, the utility takes care of some of the steps of interaction with the player engine in order
to get a specific frame or retrieve the metadata. The metadata is available to the application after the
completion of the AddDataSource call to the utility. The AddDataSource, Init, AddDataSink, Prepare,
Start, and Pause calls to the player engine are all hidden inside the processing of this request. The player
engine is taken to a paused playback state to allow the datapath to be created and to allow the user to
retrieve metadata from nodes within the datapath (e.g. codec information from decoder nodes).

There are two variants of the GetFrame call, which allow the frame buffer to either be provided by the
application or the utility. The diagram below shows the case where the buffer is provided by the utility, in
which case it must be returned once it is no longer needed using the ReturnBuffer call.

WI-Apple1695979

PVPlayer SDK Developer's Guide

OHA 1.0, rev. 1
Application Utility Command Observer PVFrameAndMetadataUtility Command Observer PVPlayerEngine
AddlataSource()
AddDataSource()
Specify a media source for the CommandCompleted()
T e s T e e ———————— L PR
InitQ)
The data sink is added CommandCompleted()
based on the output e —]
format requested when AddDataSink() /* based on output format */
the utility object was
created. CommandCompleted()
Prepare()
CommandCompleted()
6_ _____________
Start()
Atfter driving the player engine
through paused playback state, CommandCompleted()
all metadata is available for querying. BalSa0 |
CommandCompleted()
CommandCompleted() J:j_ _____________
Get the metadata values. S W i o e e i e
Returned values are valid
only during the lifetime of
the CommandCompleted
call. GetMetadataValues()
GetMetadataValues()
CommandCompleted()
CommandCompleted()
e ______________________________________
GetFrame() Stop the player engine
since it is paused.
Stop()
CommandCompleted()
usssroosisonad
Prepare()
CommandCompleted()
starto|” |
CommandCompleted()
Stop| e
CommandCompleted()
CommandCompleted() [j— _____________
e _______________________________________
ReturnBuffer()
Frame buffer is returned.
CommandCompleted()
K———————— === I

WI-Apple1695980

PVP

(Developer's Guide
OHA 1.0, rev. 1

13 Error and Fault Handling
13.1 Error Handling

Error is an erroneous system behavior that deviates from the design specifications. PVPlayer SDK will
detect and handle any errors reported within its components or outside components (e.g. platform
services, platform specific decoders). Based on the type of error, PVPlayer SDK will decide whether to
report the error to the user of the SDK or not and whether to handle the error before continuing on. The
reporting mechanism would depend on the interface between PVPlayer SDK and its user. With the
OSCL-based interface, PVPlayer SDK reports errors via the command completion callback if the error
occurs during an PVPlayer SDK APl command processing or via the observer callback,
PVErrorEventObserver, if the error is an unsolicited event.

The following section provides an overview of error types detected in PVPlayer SDK and error message
reported by PVPlayer engine. Depending on the platform and PVPlayer SDK configuration, the list of error
messages could be larger or smaller. For information on error events on a particular platform, refer to the
PVPlayer SDK API document for that platform.

13.2 Error Codes

When PVPlayer engine reports an error, the error code would be one of PVMF status codes that provides
a high-level description of the error. PVPlayer engine specific error code would be sent with the PVMF
status code in the event extension interface pointer (PVinterface*) if available. The player engine specific
error code would be encoded in the object pointed by the interface pointer and can be retrieved using
PVMFErrorinfoMessagelnterface extension interface methods.

PVMF status codes are defined in pvmf_return_codes.h. PVPlayer engine specific error code would be in
the range from 1024 to 8191 as specified by PVPlayerErrorEventType enum in pv_player_interface.h.
The UUID for PVPlayer engine specific error code collection and event codes are defined in
pv_player_interface.h as PVPlayerErrorinfoEventTypesUUID.

The PVPlayer SDK uses the following PVMF status codes for error events.

e PVMFErrCancelled

e PVMFErrNoMemory

e PVMFErrNotSupported
e PVMFErrArgument

e PVMFErrBusy

e PVMFErrNotReady

e PVMFErrCorrupt

¢ PVMFErrTimeout

e PVMFErrOverflow

e PVMFErrUnderflow

e PVMFErrInvalidState
e PVMFErrNoResources
e PVMFErrResourceConfiguration
e PVMFErrResource

WI-Apple1695981

