Apple, Inc. v. Motorola, Inc. et al Doc. 255 Att. 1

Exhibit 28

Dockets.Justia.com

http://dockets.justia.com/docket/wisconsin/wiwdc/3:2010cv00662/29072/
http://docs.justia.com/cases/federal/district-courts/wisconsin/wiwdc/3:2010cv00662/29072/255/1.html
http://dockets.justia.com/

Control No. Patent Under Reexamination

90/011,311 5,915,131
Office Action in Ex Parte Reexamination Exarmie=s AU
Woo H. Choi 3692

- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --

alx] Responsive to the communication(s) filed on 01 November 2010 . b[[] This action is made FINAL.
c[] A statement under 37 CFR 1.530 has not been received from the patent owner.

A shortened statutory period for response to this action is set to expire 2 month(s) from the mailing date of this letter.

Failure to respond within the period for response will result in termination of the proceeding and issuance of an ex parte reexamination
certificate in accordance with this action. 37 CFR 1.550(d). EXTENSIONS OF TIME ARE GOVERNED BY 37 CFR 1.550(c).

f the period for response specified above is less than thirty (30) days, a response within the statutory minimum of thirty (30) days

will be considered timely,

Partl THE FOLLOWING ATTACHMENT(S) ARE PART OF THIS ACTION:
1. [Notice of References Cited by Examiner, PTO-892. 3. [interview Summary, PTO-474,
2. [information Disclosure Statement, PTO/SB/08. 4. [.

Partll SUMMARY OF ACTION

Claims 1-20 are subject 1o reexamination,

b
g

UOOOKRKOOK

—
IS4

Claims are not subject to reexamination.

Claims have been canceled in the present reexamination proceeding.

Claims 11 and 14 are patentable and/or confirmed.
Claims 1-10.12,13 and 15-20 are rejected.

Claims are objected to,

The drawings, filed on are acceptable.
has been (7a)[:| approved (7b)[] disapproved.
Acknowledgment is made of the priority claim under 35 U.S.C. § 119(a)-(d) or {f).

a1 Al b)[7] Some* ¢)[]] None of the certified copies have
1[J been received.

The proposed drawing correction, filed on

© N e v os W

2[7] not been received.

3[] been filed in Application No.

4[] been filed in reexamination Control No.
5[] been received by the International Bureau in PCT application No.
* See the attached detailed Office action for a list of the certified copies not received.

9. [] since the proceeding appears to be in condition for issuance of an ex parte reexamination certificate except for formal
matters, prosecution as to the merits is closed in accordance with the practice under Ex parte Quayle, 1935 C.D.
11,453 O.G. 213.

10. [] Other:

cc. Requester (if third party requester)
U.8, Patent and Trademark Office

PTOL-466 (Rev. 08-06) Office Actlon In Ex Parte Reexamination Part of Paper No. 20110324

WI-Apple1701047

Application/Control Number; 90/011,311 Page 2
Art Unit: 3992

DETAILED ACTION
Reexamination
I This is an ex parte reexamination of U.S. Patént Number 5,915,131 ('131 patent)
requested by a third party requester. Claims 1-20 are subject to reexamination. The references
discussed herein are as follows:
1. Teaff, Danny, ct. al, “The Architecture of High Performance Storage Systems
(HPSS),” 4" NASA Goddard Conference on Mass Storage Systems and
Technologies, March 29-30, 1995 (“Teaff”);

2. U.S. Patent No. 5,566,346 (“Andert”).

Claim Rejections - 35 USC § 102
2. The following is a quotation of the appropriate paragraphs of 35 U.S.C. 102 that form the

basis for the rejections under this section made in this Office action:

A person shall be entitled to a patent unless —

(¢) the invention was described in (1) an application for patent, published under section 122(b), by another filed
in the United States before the invention by the applicant for patent or (2) a patent granted on an application for

. patent by another filed in the United States before the invention by the applicant for patent, except that an
international application filed under the treaty defined in section 351(a) shall have the effects for purposes of this
subsection of an application filed in the United States only if the international application designated the United
States and was published under Article 21(2) of such treaty in the English language.

3. Claims 1-6 are rejected under 35 U.S.C, 102(a) as being anticipated by Teaff.

4. With respect to claim 1, Teaff discloses a computer system (p. 3, Figure 1) comprising:
a bus (Figure 1, control buses that connect network elements and workstations to.the

HPSS servers; also, a bus is an inherent component of a computer system);

WIi-Apple1701048

Application/Control Number: 90/011,311 Page 3
Art Unit: 3992

at least one memory (Figure 1, network attached memories or other memories in servers
and workstations) coupled to the bus for storing data and programming instructions that
include applications and an operating system; and

a processing unit (Figure 1, servérs and workstations) coupled to the bus and running
the operating system and applications by executing programming instructions (see pp. 4-5,
Modularity and APIs, and Portability and Standards), wherein an application has a first
plurality of tailored distinct programming interfaces (p. 4, “The HPSS software components
are loosely coupled, with open application program interfaces (APIs) defined at each component
level”; see also Appendix A for a list of tailored APIs) available to access a plurality of
separate sets of com'puter system services (p. 4, “Most users will access HPSS at its high level
interfaces —lc]ient APL, FTP, (both parallel and sequential), NFS, Parallel File system (PFS), with
AFS/DFS, .‘..”j through the operating system of the computer system via service reques.ts
(see Figures 2 and 3, and the text associated with the figures; see Figure 6 for an example of

security service requests handled through the operating system).

5. With respect to claim 3, see the discussion of claim 1 above. Teaff discloses that the
operating system comprises a plurality of servers (see Figures 1 and 2, HPSS Servers, name
servers, location servers, etc.; see also Appendix A), and each of the first plurality of
programming interfaces transfer service requests to one of the plurality of servers, wherein
each of the blurality of servers responds to service requests from clients of the separate sets

of 1/0 services (see p. 4, Modularity and APls and Figure 2; Appendix A).

WI-Apple1701049

Application/Control Number: 90/011,311 Page 4
Art Unit: 3992 '

6. With respect to claim 2, each of the first plurality of tailored distinct programming
interfaces are tailored to a type of I/0 service provided by each set of 1/0 services (p. 4,
Modularity and APIs; see also Appendix A, APIs are tailored for each type of services).

7. With respect to claim 4, service requests are transferred as messages in a messaging
system (p. 8, “HPSS uses the DCE Remote Procedure Call (RPC) mechanism for control
messages and DCE Threads for multitasking”).

8. With respect to claim S, each of the plurality of servers supports a message port (see
p. 10, Communication, “The control path communication between HPSS components is through
DCE RCPs or Encima transaction RPCs. For data path communication, the HPSS Mover(s)

currently utilize either Sockets or IPI-3 (over HIPPI) libraries.”).

9. With respect to claim 6, at least one of the plurality of servers is responsive to service
requests from applications and from at least one other set of 1/0 services (see p. 14, Physical

Volume Library, “The volume mount service is provided to clients such as a Storage Server”).

10. Claims 1-10, 12-13, and 15-20 are rejected under 35 U.S.C. 102(a) as being anticipated

by Andert.

11, With respect to claim 1, Andert discloses a computer system (Figure 10) comprising:

a bus (see Figures 4, 7, and 8);

WI-Apple1701050

Application/Control Number: 90/011,311 Page 5
Art Unit: 3992

at least one memory (Figure 10, 1008) coupled to the bus for storing data and
programming instructions that include applications and an operating system; and

a processing unit (1006) coupled to the bus and running the operating system (1014)
and applications (1030) by executing programming instructions, wherein an application
has a first plurality of tailored distinct programming interfaces (see Figure 1 and c8:30-44)
available to access a plurality of separate sets of computer system services, (c8:45-67)
through the operating system .(see Figure 5, applications 1030 access I/O services provided by
Device Ensembles 1032 through the operating system 1014; see also ¢3:47-49) of the computer |

system via service requests (c1:59-62).

12. With respect to claim 3, seé‘\thc discussion of claim 1 above. Andert discloses that the
operating system comprises a plurality of servers (see Figures 1 and 2, 10 services
frameworks), and each of the first plurality of programming interfaces transfer service
requests to one of the plurality of servers, wherein each of the plurality of servers responds

to service requests from clients of the separate sets of I/0Q services (see Figure 1,¢10:1-6),
13. With respect to claim 2, each of the first plurality of tailored distinct programming
interfaces are tailored to a type of I/O service provided by each set of I/O services (see

Figure 1; see also ¢8:45-67),

14. With respect to claim 4, service requests are transferred as messages in a messaging

system (c10:1-6 and ¢17:36-40).

WI-Apple1701051

Application/Control Number: 90/011,311 Page 6
Art Unit; 3992

15. With respect to claim 5, each of the plurality of servers supports a message port (see
¢17:36-53, the message port limitation reads on the means for receiving messages from

application programs and interrupt service means).

16. With respect to claim 6, at least one of the plurality of servers is responsive to service

requests from applications and from at least one other set of I/0 services (c9:1-11).

7. With respect to claim 7, the operating system further comprises a plurality of
activation models, wherein each of the plurality of activation models is associated with one
of the plurality of servers to provide a runtime environment for the set of 1/0 services to

which access is provided by said one of the plurality of servers (c11:25-58).

18. With respect to claim 8, at least one instance of a service is called by one of the
plurality of servers for execution in an environment set forth by one of the plurality of

activation models (c11:25-58).

19, With respect to claim 9, Andert discloses a computer system comprising:
a bus (see claim 1 above);
. atleast one memory coupled to the bus for storing data and programming

instructions that comprise applications and an operating system (see claim 1 above);

WI-Apple1701052

"t AT

Application/Control Number: 90/011,311 Page 7
Art Unit: 3992

a processing unit coupled to the bus and running the operating system and
applications by executing programming instructions, wherein the operating system
provides computer system services through a tailored distinct one of a plurality of program
structures (see claim | above), each tailored distinet program structure comprising:

a first programming interface for receiving service requests for a set of computer
system I/0 services of a first type (see s | and 3 above),

a first server coupled to receive service requests and to dispatch service requests to
the computer system 1/0 services (.see claim 3 above),

an activation model to define an operating environment in which a service request is
to be serviced by the set of computer system I/0 services (see claim 7 above), and

at least one specific instance of the set of computer system 1/0 services that operate

within the activation model (see claim 8 above).

20. With respect to claim 10, the first programming interface is responsive to request

from applications and from other program structures (see claim 6 above).

21, With respect to claim 12, the first server receives a message corresponding a service
request from the first programming interface, maps the message into a function called by
the client, and then calls the function (c17:36-54, subroutines in the I/O service framework are

executed to provide data to the application program in response to the messages received),

22. With respect to claim 13, the message comprises a kernel message (c17:41-46),

WI-Apple1701053

Application/Control Number: 90/011,311 Page 8
Art Unit: 3992

23, With respect to claim 15, two or more /0 services share code or data (c9:1-11, code

or data for SCSI service is shared by the SCSI framework and the Mass-Storage framework).

24. With respect to claim 16, said two or more I/O services are different types (see Figure

1).

25. With respect to claim 17, the program structure further comprises a storage
mechanism to maintain identification of available services to which aceess is provided via

the first server (c14:30-56).

26. With respect to claim 18, a computer implemented method of accessing 1/0 services
of a first type, said computer impleménted method comprising the steps of:

generating a service request for a first type of 1/0 services (see claims 1, 3, and 9
above);

a tailored distinct family server, operating in an operating system environment and
dedicated to providing access to service requests for the first type of I/O service, receiving
and responding to the service request based on ;n activation model specific to the first type
of I/0 services (see claims 1, 3, and 9 above); and

a processor running an instance of the first type of I/O services that is interfaces to

the file server to satisfy the service request (see claims 1, 3, and 9 above).

<

WI-Apple1701054

Application/Control Number: 90/011,311 Page 9
Art Unit: 3992

27. With respect to claim 19, the service request is generated by an application (sce claim
7 above).
28. With respect to claim 20, the service request is generated by an instance of an I/0

service running in the operating system environment (see claim 7 abhove).

Examiner's Statement of Reasons for Patentability/Confirmation
29. Claims 11 and 14 are deemed to be patentable and/or confirmed over the prior

art of record for the following reasons:

30. Claim 11 recites the limitation “the first programming interface comprises at least one
library for converting functions into messages.” Requester alleges that Andert discloses the
.limitation atcl0:1-6 (“A client 214 sends requests for services to a specific 1O service
framework 102 associated with the client. The 10 service framework 102 uses its associated
access manager 210 to load an appropriate device register with an appropriate command, such as
“write byte,” “bulfer a block,” or whatever the appropriate action might be.”) (see Request, p.
67). Requester asserts that “[t]hese commands, “write a byte” or “buffer a block,” must reside in
a library.” However, Requester provides no basis for this assertion. Andert discloses receiving
messages from application programs. In contrast, the claim requires the programming interface
to convert functions into messages (see the '131 patent specification, Figure 3, where a procedure

call from an application 302 is converted ihto a message by the library 303 at the interface 301).

WI-Apple1701055

Application/Control Number: 90/011,311 Page 10
Art Unit: 3992

31. Claim 14 recites the limitation “said one of said at least one specific instances
communicates to said another program structure of a second type using a message created
using a library sent to the server of said another program structure.” Andert does not

disclose a message that is created using a library sent to the server.

Service of Papers
32. After filing of a request for ex parte reexamination by a third party requester, any
document filed by cither the patent owner or the third party requester must be served on the otiqcr
party (or parties where two or more third party requester proceedings are merged) in the
reexamination proceeding in the manner provided in 37 CFR 1.248. The document must reflect

service or the document may be refused consideration by the Office. See 37 CFR 1 S550(%).

Extensions of Time
33. Extensions of time under 37 CFR 1.136(a) will not be permitted in these proceedings
because the provisions of 37 CFR 1.136 apply only to "an applicant” and not to parties in a
reexamination proceeding. Additionally, 35 U.S.C. 305 requires that ex parte reexamination
proceedings "will be conducted with special dispatch" (37 CFR 1.550(a)). Extensions of time in

ex parfe reexamination proceedings are provided for in 37 CFR 1.550(c).
Litigation Reminder

34. The patent owner is reminded of the continuing responsibility under 37 CFR 1.565(a) to

apprise the Office of any litigation activity, or other prior or concurrent proceeding, involving the

WI-Apple1701056

T Sy e

Application/Control Number: 90/011,311 Page 11
Art Unit: 3992

patent throughout the course of this reexamination proceeding. The third party requester is also
reminded of the ability to similarly apprise the Office of any such activity or proceeding

throughout the course-of this reexamination proceeding. See MPEP §§ 2207, 2282 and 2286.

WI-Apple1701057

Application/Control Number: 90/011,311 Page 12
Art Unit: 3992

All correspondence relating to this ex parte reexamination proceeding should be directed as
follows: ‘

By U.S. Postal Service Mail (o

Mail Stop Ex Parte Reexam

ATTN: Central Reexamination Unit
Commissioner for Patents

P.O. Box 1450

Alexandria, VA 22313-1450

By FAX to: (571) 273-9900
Central Reexamination Unit

By hand to: Customer Service Window)
Randolph Building
401 Dulany St.
Alexandria, VA 22314 -

Any inquiry concerning this communication or earlier communications from the Reexamination

Legal Advisor or Examiner, or as to the status of this proceeding, should be directed to the
Central Reexamination Unit at telephone number (571) 272-7705.

/Woo H. Choi/
Reexamination Specialist
Central Reexamination Unit 3992

24 E6K
A=

WI-Apple1701058

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Reexamination of

U.S. Patent No. 5,915,131

to KNIGHT, et al.

Reexam Control No. 90/011,311
Filed November 1, 2010

For: METHOD AND APPARATUS
FOR HANDLING IO REQUESTS
UTILIZING SEPARATE
PROGRAMMING INTERFACES TO
ACCESS SEPARATE I/O SERVICES

Mail Stop Ex Parte Reexamination
Central Reexamination Unit
Commissioner for Patents

P.O. Box 1450

Alexandria, VA 22313-1450

Confirmation No.: 1355

Art Unit: 3992

Examiner; CHOI, Woo

Atty. Docket No. 20142.0003. RXUS00

Patent Owner’s Interview Summary

Patent Owner thanks the Examiner for the courtesies extended during the May 27,

2011 Examiner Interview. A discussion took place in which the Patent Owner argued

that Andert did not disclose a tailored distinct programming interface; that neither

reference disclosed a plurality of servers as part of the operating system; and that

Andert’s Device Access Manager does not define an execution environment, but only

regulates device access. The discussion focused on the meaning of claim terms. Patent

Owner acknowledged the broadest reasonable interpretation standard, but pointed out that

claim terms still must have a meaning that is reasonable in light of the specification, and

that it is that understanding of the claim limitation that must be disclosed in the prior art

to constitute anticipation. No agreement was reached.

WI-Apple1701059

sk ok kK

The undersigned representative requests any extension of time that may be
deemed necessary to further prosecution of this application.

The undersigned representative authorizes the Commissioner to charge any
additional fees under 37 C.F.R. § 1.16 or 1.17 that may be required, or credit any
overpayment, to Deposit Account 14-1437, referencing Attorney Docket No.
20142.0003.RXUS00.

In order to facilitate the resolution of any issues or questions resented by this

paper, the Examiner may directly contact the undersi gned by phone to further discussion.

Respectfully submitted,

/tracy w. druce/

Tracy W. Druce, Esq.
Reg. No. 35,493

Brian K. McKnight, Esq.
Reg. No. 59,914

C. Gideon Korrell, Esq.
Reg. No. 60,131

Novak, Druce + Quigg LLP

1000 Louisiana Street, Suite 5300
Houston, Texas 77002

(713) 571-3400

(713) 456-2836 (fax)

tracy.druce @novakdruce.com

WI-Apple1701060

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Reexamination of

U.S. Patent No. 5,915,131

to KNIGHT, et al.

Reexam Control No. 90/011,311
Filed November 1, 2010

For: METHOD AND APPARATUS
FOR HANDLING I/0 REQUESTS
UTILIZING SEPARATE
PROGRAMMING INTERFACES TO
ACCESS SEPARATE 1/0 SERVICES

Mail Stop Ex Parte Reexamination
Central Reexamination Unit
Commissioner for Patents

P.O. Box 1450

Alexandria, VA 22313-1450

Confirmation No.: 1355

Art Unit: 3992

Examiner; CHOI, Woo

Atty, Docket No. 20142.0003.RXUS00

Patent Owner’s Response to Non-Final Office Action
Under 37 C.F.R. §§ 1.111 and 1.550 in Ex Parte Reexamination

This paper is filed in response to the Non-Final Office Action mailed April 11,

2011 (“Office Action”) in the above-captioned ex parte reexamination proceeding setting

forth a shortened statutory period of two months in which to respond. Accordingly, this

paper is timely filed on or before June 13, 2011 which is the next succeeding secular or

business day which is not a Saturday, Sunday, or a Federal holiday after Saturday, June

11,2011. 35U0.8.C. 21,

WIi-Apple1701061

Ctrl. No 90/011,311

I. Status of Claims

Claims 1-20 of U.S. Patent No. 5,915,131 (the ‘131 patent) are pending in this
reexamination proceeding. Claims 1-10, 12, 13, and 15-20 stand rejected, and claims 11
and 14 are confirmed. In this response no claims have been amended. Patent Owner
submits that all claims are in condition for confirmation, and therefore requests
reconsideration and issuance of a Notice of Intent to Issue a Reexamination Certificate

(NIRC) confirming all claims.

II. Summary of Principal Arguments

There are fundamental differences between the invention claimed in the ‘131
patent and the Andert and Teaff references that form the basis of the Examiner’s
rejections. First, the Andert reference does not disclose, teach, or suggest “a first
plurality of tailored distinct programming interfaces
available to access a plurality of separate sets of I/0
services provided through the operating system via service

requests.” Second, neither the Andert reference nor the Teaff reference discloses,
teaches, or suggests “an operating system compris[ing] a plurality
of servers.” Third, the Andert reference does not disclose, teach, or suggest an
“operating system [that] further comprises a plurality of
activation models.” Fourth, the Teaff reference does not disclose, teach, or
suggest “[a] computer system comprising: a bus; at least one
memory coupled to the bus . . .; and a processing unit

coupled to the bus.”

ITI. All Rejected Claims are Patentable Over the Andert and Teaff
References
In the Office Action, claims 1-6 were rejected under 35 U.S.C. § 102 as being
anticipated by both the Andert and Teaff references. Additionally, claims 7-10, 12-13,
and 15-20 were rejected under 35 U.S.C. § 102 as being anticipated by Andert only.

However, neither of the references anticipates the claims because neither reference

WI-Apple1701062

Ctrl. No 90/011,311

discloses every element recited in the claims." % Accordin gly, Patent Owner respectfully

traverses the rejections.

A. Andert Does Not Disclose “a first pPlurality of tailored
distinct programming interfaces”

Claim 3 recites, inter alia, “wherein an application has a first
plurality of tailored distinct programming interfaces
available to access a plurality of separate sets of I/0
services provided through the operating system via service

requests.” The relevant section of the Office Action is provided below for reference:

wherein an application has a first plurality of tailored
distinct programming interfaces (see Figure 1 and ¢8:30-
44) available to access a plurality of separate sets of
computer system services (c8:45-67) through the
operating system (see Figure 5, applications 1030 access
I/O services provided by Device Ensembles 1032 through
the operating system 1014; see also ¢3:47-49) of the
computer system via service requests (c1:59-62).°

The Office Action asserts that Andert anticipates the claimed tailored distinct
programming interfaces through Andert’s Figure 1 and at col. 8, lines 30-44, where it
shows and describes various I/O Service Frameworks. However, the 1/0 Service
Frameworks in Andert are not a tailored distinct programming interface for accessing
computer system services as recited in the claim because Andert does not disclose that

the interfaces to the I/O System Framework are tailored.

! Verdegaal Bros. v. Union Oil Co. of California, 814 F.2d 628, 631 (Fed. Cir. 1987) (“A claim is
anticipated only if each and every element as set forth in the claim is found, either expressly or inherently
described, in a single prior art reference.”); Bristol-Myers Squibb Co. v. Danbury Pharm., Inc., 26 F.3d
138 (Fed. Cir. 1994) (“There must be no difference between the claimed invention and the anticipating
reference as viewed by a person of ordinary skill in the art.”) (citing Scripps Clinic & Research Fen, v.
Genetech, Inc., 927 F.2d 1565, 1576 (Fed. Cir. 1991)); Richardson v. Suzuki Motor Co., 868 F.2d 1226,
1236 (Fed. Cir. 1989) ("The identical invention must be shown in as complete detail as is contained in
the ... claim."); MPEP 2131.

* Also, an ambiguous prior art reference is not anticipatory. Mitsubishi Chemical Corp. v. Barr Labs., Inc.,
718 F. Supp.2d 382,415-16 (citing Eli Lilly & Co. v. Zenith Goldline Pharms., Inc., 364 V. Supp. 2d 820,
901 (S.D. Ind. 2005) (citing In re Brink, 57 C.C.P.A. 861, 419 F.2d 914, 918 (1970)), afi’d, 471 F.3d
1369 (Fed. Cir. 2006); In re Turlay, 49 C.C.P.A. 1288, 304 F.2d 893, 899 (1962) (“It is well established
that an anticipation rejection cannot be predicated on an ambiguous reference.”); In re Hughes, 52
C.C.P.A. 1355, 345 F. 2d 184, 188 (1965) (“[Aln ambiguous reference ... will not supporl an
anticipation rejection.”),

* Ctrl. No. 90/01 1,311, Office Action, mailed Apr. 11, 2011, at 5 (bold in original).

WI-Apple1701063

Cul. No 90/011,311

The plurality of I/O service frameworks disclosed in the Andert reference appear
to provide applications access to the various I/O services offered through the operating
system. The examples of I/O services disclosed by Andert include:

(a) Mass Storage /O services; (b) Keyboard processing

services; (c) Mouse/Pointing device processing services;

(d) SCSI services; (e) Serial communications port services;

(f) Expansion bus management services; (g) Desktop bus

I/0 services; and (h) Power management services.”
By providing access to these operating system services, each of the /O service
frameworks presumably include interfaces, which might be considered distinct, but are
not disclosed as being tailored, as those terms are used in the *131 patent.

The term “tailored” is used in both the claim and the specification without any
special meaning beyond its dictionary definition.” In the context of claim 3, “tailored”
refers to a programming interface® to a family of 1/0 services that is customized to meet
the particular needs of that family,” Such an interpretation is consistent with both the
original prosecution of the application that matured into the ‘131 patent® and the ‘131
patent’s specification.'® !

Specifically, the ‘131 patent states:

* Andert at 8:31-37.

* See Exhibit B - The definition of “tailor” is “to cut, form, produce, alter, etc. so as to meet requirements
or particular conditions; as her novel is railored to popular tastes.” WEBSTER’S NEW TWENTIETH
CENTURY DICTIONARY 1858 (2d ed. 1983),

S An “application programming interface” is referred to in the “131 patent specification as “FPI” or “family
programming interface.”

7 Serial No. 08/435,677, Response, dated Sept. 2, 1997, at 4-5.

® Serial No. 08/435,677, Response, dated Sept. 2, 1997, at 2-5,

? Serial No. 08/435,677, Office Action, mailed Jan. 2, 1998, at 3.
1 The *131 patent at 6:20-36.

11 e - L.
T'he Federal Circuit has recently explained that claim interpretation during patent reexaminations are only
reasonable if consistent with the specification:

As a starting point, the proper interpretation of a claim limitation in
reexamination must be assessed. While it is true that claim language is required
to be given its broadest reasonable interpretation, it is also true that the
interpretation must be ‘consistent with the specification, . . . and that claim
language should be read in light of the specification as it would be interpreted by
one of ordinary skill in the art.’

In re Suitco Surface, 603 F.3d 1255, 1260 (Fed. Cir. 2010) (citing In re Bond, 910 F.2d 831, 833
(Fed.Cir.1990) (quoting In re Sneed, 710 F.2d 1544, 1548 (Fed.Cir.1983))).

WI-Apple1701064

Ctrl. No 90/011,311

For example, when an application generates data for a
video device, a display FPI tailored to the needs of video
devices is used to gain access to display services. Likewise,
when an application desires to input or output sound data,
the application gains access to a sound family of services
through an FPIL Therefore, the present invention provides
family programming interfaces tailored to the needs of
specific device families, 2

Andert, however, does not disclose a programming interface that is tailored to the
needs of the associated service. Andert is silent regarding the details of any interface
made available by its 1/0 service frameworks beyond disclosing that they “represent an
end user’s interface to the I/0 system,” '3 and similar statements, which do not anticipate
the claimed “tailored distinct programming interfaces.”

In fact, it is probable that Andert’s interface to its /O service frameworks was not
tailored. In the accompanying Declaration, David Wilson, Ph.D. explains that leading up
to and at the time of the ‘131 patent’s filing, typical interfaces to /O services were
limited to only a generic set of commands,

However, regardless of the reason, Andert does not provide any description of its
VO service frameworks that can be considered a disclosure of “tailored distinct
programming interfaces.” As anticipation requires the reference to disclose each
and every feature of the claim, Andert does not anticipate. Accordingly, Patent Owner
submits that the rejection should be withdrawn.

While it has not been alleged in the current rejection, Patent Owner nevertheless
notes that Andert does not anticipate the claim through any other application of the
reference. Patent Owner notes that none of the other interfaces present in Andert could
be considered to anticipate the claimed “tailored distinct programming
interfaces” asnone of the interfaces of Andert are disclosed as being tailored.

For example, Andert’s Device Access Manager cannot have, or be itself
considered the claimed tailored programming interfaces. While Andert indicates that a

“one-size-fits-all” interface abstraction is not desirable when discussing the Device

" The *131 patent at 6:29-36 (emphasis added).
" Andert at 9:15-16.
* See Exhibit A,Wilson Dec. 44 36-38.

Wi-Apple1701065

Ctrl. No 90/011,311

Access Manager, Andert is discussing the functions of the Device Access Manager, not
the interface to the Device Access Manager. !’

Furthermore, even if Andert’'s Device Access Manager had or was a tailored
interface, the reference fails to disclose other elements of the claim. If Andert’s Device
Access Manager was cited against the “tailored distinct programming
interfaces” claim limitation, nothing in Andert would disclose the claimed server,
applications, or the plurality of activation models (in claim 7).

In conclusion, the rejection improperly alleges anticipation by Andert of the
claimed: “a first plurality of tailored distinct programming
interfaces” because the asserted I/O Service Frameworks in Andert are not disclosed
to be tailored. Further, no other interface in Andert is disclosed as being tailored.
Accordingly, Patent Owner submits that Andert does not anticipate claim 3.

Additionally, claim 1 recites the identical limitation and claims 9 and 18 recite a
similar limitation and are patentable for the reasons discussed above with respect to claim
3. Claim 9 recites “wherein the operating system provides computer
system services through a tailored distinct one of a
plurality of program structures, each tailored distinct

program structure comprising: a first programming interface
for receiving service requests for a set of computer system
I/0 services of a first type.” Claim 18 recites “a tailored
distinct family server, operating in an operating system
environment and dedicated to providing access to service
requests for the first type of I/0 service.” Justas claim 3 is not
anticipated by Andert, the respective rejections of claims 1, 9, and 18 also fail to
anticipate because Andert’s /O Service Frameworks are not disclosed as being tailored
or distinct. Accordingly, Patent Owner submits that Andert does not anticipate claims 1,

3,9, 18, or any of their respective dependent claims.

5 Andert at 11:26-53.

WI-Apple1701066

Ctrl, No 90/011,311

B. Andert Does Not Disclose “an operating system comprising
a plurality of servers”

Claim 3 recites “wherein the operating system cOmprises a
plurality of servers, and each of the first plurality of
programming interfaces transfer service requests to one of
the plurality of servers, wherein each of the plurality of
servers responds to service requests from clients of the
separate sets of I/0 services.” The Office Action alleges that Andert

anticipates this limitation in the following way:

Andert discloses that the operating system comprises a
plurality of servers (see Figures 1 and 2, /O services
frameworks), and each of the first plurality of
programming interfaces transfer service requests to one
of the plurality of servers, wherein each of the plurality
of servers responds to service requests from clients of
the separate sets of 1/0 services (see Figure 1, ¢ 10:1-6).'°

These portions of the Andert reference cited in the Office Action do not make any
mention of an operating system comprising a plurality of servers, Specifically, the Office
Action cites to Figures 1 and 2 of Andert where it shows the I/O Service Frameworks
which are presumably alleged to be the claimed servers. The Office Action however
does not assert that Andert’s I/0 Service Frameworks are part of an operating system as
required by the claim. This is most likely because Andert explains that the I/O Service
Frameworks are not part of the operating system.

Andert specifically illustrates its I/0 Service Frameworks as being outside the
operating system.!” For example, in Andert’s Figure 3, below, the client I/O services
shown communicating with the device access manager are illustrated as being in a user
mode, which as Dr, Wilson discusses in his inclided Declaration, is another way of

specifying that they are outside of the operating system. '®

 Ctrl. No. 90/011,311, Office Action, mailed Apr. 11,2011, at 5 (bold in original).
1 Andert, at FIG. 3.
¥ See Exhibit A, Wilson Dec. 44 40-41,

WI-Apple1701067

Cliers

Qevice Access
Kanagar
abstrastion

K2 Services

{User Mods)

Cantrad

rerrronraocan i

Ctrl. No 90/011,311

(Priysivat Kardwaes)

{Supervisny Mﬂ;\A

daiite
Indgrrupt

o

iInterrupt Nolification

L!mbenu it Handior

rasvupt Sendcey

feetmeragst
Dispratch

)
i

A

L E:TSTEN

FIGURE 3

Dr, Wilson explains that both the ‘131 patent and Andert draw a clear boundary

between its user mode and its supervisor mode (operating system mode), and that both

references use the user mode terminology consistently and the terminology has the same

meaning in both documents.' As Andert never discloses its I/O Service Frameworks as

being in the operating system, Patent Owner asserts that the rejection should be

withdrawn.

While it has not been alleged in the current rejection, Andert’s Interrupt Services,

which are illustrated to be in Andert’s Supervisor Mode, cannot be the claimed servers.

As Dr. Wilson discusses in the accompanying Declaration, he understands the ‘131 patent

Servers to receive service requests via an API from applications.”® Since the interrupt

services do not receive service requests from applications, the interrupt services cannot

be the claimed service.
In conclusion, the Office Action incorrectly

Operating system comprises

a plurality

alleges that Andert discloses “the

of servers” because

Andert does not disclose that its /O Service Frameworks are in the operating system. In

” See Exhibit A,Wilson Dec. qq 12, and 40-41; see also Exhibit A Wilson Dec. at 99 10-14, and 17-19.

% See Wilson Dec. q 26.

WI-Apple1701068

Ctrl. No 90/011,311

fact, Andert specifically excludes the I/O Service Frameworks from the operating system.
Accordingly, Patent Owner submits that Andert does not anticipate claim 3, or its
dependent claims. Furthermore, independent claims 9 and 18 also recite limitations that
require that servers be within the operating system. Claim 9 recites, “the operating
system provides computer system services through a tailored
distinct one of a plurality of program structures, each
tailored distinct program structure comprising.. a first
server” and claim 18 recites “a tailored distinct family server,
operating in an operating system environment.”? As claim 9 and 18
recite similar limitations as claim 3, they, and their respective dependent claims, are also
patentable for the same reasons as claim 3 and its dependents. Accordingly, Patent

Owner requests a NIRC confirming these claims,

C. Teaff Does Not Disclose “the operating system comprises
a plurality of servers”

Claim 3 recitcs “wherein the operating system comprises a
plurality of servers, and each of the first plurality of
programming interfaces transfer service requests to one of
the plurality of servers, wherein each of the plurality of
servers responds to service requests from clients of the
separate sets of I/0 services.” The Office Action alleges that Teaff

anticipates this limitation in the following way:

' As discussed in his Declaration, Dr. Wilson explains that an operating system environment is the run
time memory environment of the operating system. See Wilson Dec. {4 20-23.

WI-Apple1701069

Ctrl. No 90/011,311

each of the first plurality of programming interfaces
transfer service requests to ome of the plurality of
servers, wherein each of the plurality of servers
responds to service requests from clients of the separate
sets of 1/0 services (sec p. 4, Modularity and APls and
Figure 2; Appendix A). %

However, none of the cited sections disclose that the “operating system
comprises a plurality of servers” Teaff’s page 4 cited in the Office
Action describes that Teaff’s “HPSS architecture is highly modular,” and that the “HPSS
software components are loosely coupled” with APIs. Nothing in this portion of Teaff or
the Office Action points to an operating system comprising a plurality of servers, The
same is true in Teaff’s Appendix A, which lists APIs to HPSS components. Figure 2
does illustrate a plurality of servers, but it does not show their relationship to the
operating system. Further, Teaff’s Figure 2 shows servers as being HPSS components,
and as discussed in detail below, Teaff’s HPSS application layer is separate from the
operating system. Patent Owner submits that the rejection fails to anticipate claim 3
because it does not show that Teaff discloses that the “operating system
comprises a plurality of servers,” asclaimed.

The Teaff reference discloses what it calls a High Performance Storage System in
which client requests are directed by an HPSS server to network-attached storage devices
through a high-speed data transfer network.”> In the HPSS system, clients gain access to
the networked storage devices by accessing the HPSS server through an APL. Teaff
never discloses that its HPSS servers are part of the operating system, and never discloses
that the HPSS system is itself an operating system. Rather Teaff actually indicates the
opposite. As illustrated in Teaff’s Figure 3 below, HPSS is shown to be situated several

layers above and indeed separate from the operating system,

2 Ctrl. No. 90/01 1,311, Office Action, mailed Apr. 11, 2011, at 3 (bold in original).

B Peaf f, at 3.

10

WI-Apple1701070

Ctrl. No 90/011,311

e Y T
{ HEZHE P
oo S ‘l':: . \\N
e} ‘ e oy
G T %
% n
s ; 31
:) o 2
¢ e ?
u DR DR @
Dlatribusted Direstory rg‘l
11 T Barvice Sarvios }
; t R B e
" 4
:// DOE Nemote Procsde Call Sy

&
AT

i QOE Thraads

o

I Cperaiing System ared Transport Services

Figrre 3+ HPSS DUE Aschiteetuze Infeastnicture

Further, the HPSS itself cannot be considered an operating system. HPSS utilizes
services from the layers below such as the DCE (distributed computing environment

standard) and the operating system, ** *°

and such behavior is inconsistent with a view of
the HPSS being considered an operating system.?

In fact, Teaff does not anticipate the claim because including the servers in an
operating system was antithetical to Teaff’s explicit design objective.’ Specifically
Teaff states:

Another important design goal is portability to many
vendor's platforms to enable OEM and multivendor support
of HPSS. HPSS has been designed to run under Unix
requiring no kernel modifications, and to use standards
based protocols, interfaces, and services where
applicable.®

In the passage above, Teaff clearly states that it is designed to be portable to many
vendor’s platforms, and therefore Teaff would not want to limit the use of its servers to

one specific operating system.,

See Tealt, p- 4 (“These requirements are accomplished using a client/server architecture, the use of OSF's
DeE as its distributed infrastructure, support for distributed file system interfaces and multiple servers.”)

5 See Teaff, p. 7 (“HPSS uses OSF's DCE as the base infrastructure for its distributed architecture.”)
% See Exhibit A, Wilson Dec. § 45.
¥ See Exhibit A, Wilson Dec. J 46,

3 Teaff, at 5.

11

WI-Apple1701071

Ctrl. No 90/011,311

In conclusion, Teaff does not disclose “wherein the operating system
comprises a plurality of servers, and each of the first
plurality of programming interfaces transfer service
requests to one of the plurality of servers, wherein each of
the plurality of servers responds to service requests from
clients of the separate sets of I/0 services” as claimed. Further,
the limitation is antithetical to Teaff’s specific design objectives to work in a layer under
the operating system. Accordingly, Patent Owner submits that Teaff does not anticipate
claim 3, or its dependents. Accordingly, Patent Owner requests a NIRC confirming these

claims.

D. Andert Does Not Disclose “the operating system comprises
a plurality of activation models”

Claim 7 recites, inter alia, “[t]he computer system defined in
claim 3 wherein the operating system further comprises a
plurality of activation models.” Regarding Andert, the Office Action
asserts:

With respect to claim 7, the operating system further
comprises a plurality of activation models, wherein each
of the plurality of activation models is associated with
one of the plurality of servers to provide a runtime
environment for the set of I/0 services to which access is
prm;igded by said one of the plurality of servers (c 11:25-
58).

The Office Action asserts that Andert discloses the claimed activation model by
way of Andert’s Device Access Manager. However, the activation model is claimed to
be in the operating system while the Device Access Manager resides outside the
operating system in user space.

Andert requires that the Device Access Manager reside outside of the operating
system. Similar to the discussion above with respect to servers, Andert places its Device

Access Manger in the user space as illustrated in its FIG. 3, below.

¥ Curl, No. 90/01 1,311, Office Action, mailed Apr. 11,2011, at 6. (bold in original)

12

WI-Apple1701072

Ctrl. No 90/011,311

Cligrd 10 Sardices

f 1 (Physiosl Hargwara)

Manager
BhSIrscTue

{Ugar Mode)
{Suparvisor &iocfe)“ﬁz*\

Ceserty device
infernpt Notifzaton 'j’}‘ﬁm*i"

g Sewim:]:
) i

it
ksm&smm Handies igpatets

Kara

FIGURE 3

Accordingly, Andert explicitly places its Device Access Manager outside its
operating system, unlike the claimed activation model, which is recited as being
comprised in the operating system; therefore Andert does not anticipate this limitation of
the claim.

More fundamentally, the activation model is just a model while the Device
Access Manager is actual executable code. The activation model is defined by the claims
as a model associated with one of the plurality of servers to provide a runtime
environment for the set of I/O services. This is different from Andert’s Device Access
Manager that executes hardware access tasks. Andert describes the Device Access
Manager as “user-mode abstractions that execute outside the kernel and are charged with
all tasks performing tasks associated with hardware access.”*® Andert explains that some
of the tasks performed by the Device Access Manager include: install and remove
Interrupt I~~Iandlers,31 makes buffers ready for I/O,32 unlocks client’s resident 1/O
buffers,” and informs clients through the I/0 service framework of completed tasks.™

The activation model, on the other hand, does not perform tasks; rather, as explained

* Andert, at 9:49-51,
3 Andert, at 10:42-43.
* Andert, at 11:4-6.

Andert, at 11:19-20,
* Andert, at 11:20-22.

13

WI-Apple1701073

Ctrl. No 90/011,311

above, it defines the runtime environment. It is something that executables reference to.
Accordingly, the Device Access Manager does not disclose the claimed activation
models.

In conclusion, the Office Action incorrectly alleges that Andert discloses “the
operating system further comprises a plurality of activation
models” because Andert does not disclose that its Device Access Manager, which is
cited against the claimed activation models, is in the operating system. In fact, Andert
specifically places the Device Access Manager in user space, and therefore outside the
protection of the operating system. Accordingly, Patent Owner submits that Andert does
not anticipate claim 7, or its dependent claim. Independent claims 9 and 18 also recite
limitations that require that activation models be within the operating system. Claim 9
recites, “the operating system provides computer system services
through a tailored distinct one of a plurality of program

structures, each tailored distinct program structure
comprising.. an activation model to define an operating
environment” and claim 18 recites “a tailored distinct family
server, operating in an operating system environment and
dedicated to providing access to service requests for the
first type of I/0 service, receiving and responding to the
service request based on an activation model specific to the
first type of I/0 services.” ™ Asclaim 9 and 18 recite similar limitations
as claim 7, they, and their dependent claims, are also patentable for the same reasons as
claim 7 and its dependents. Accordingly, Patent Owner requests a NIRC confirming

these claims.

% As discussed in his Declaration, Dr. Wilson explains that an operating system environment is the run
time memory environment of the operating system. See Wilson Dec. 991 20-23.

14

WI-Apple1701074

Ctrl. No 90/011,311

E. Teaff Does Not Disclose “a computer system comprising: a
bus.”

Claim 1 recites, inter alia, “A computer system comprising: a bus;
at least one memory coupled to the bus . . .; and a
processing unit coupled to the bus.” Regarding Teaff, the Office Action
asserts:

Teaff discloses a computer system (p. 3, Figure 1)
comprising:

a bus (Figure 1, control buses that connect network
elements and workstations to the HPSS servers; also, a bus
is an inherent component of a computer system);

at least one memory (Figure 1, network attached
memories or other memories in servers and workstations)
coupled to the bus for storing data and programming
instructions that include applications and an operating
system; and

a processing unit (Figure 1, servers and workstations)
coupled to the bus and running the operating system
and applications by executing programming
instructions (see pp. 4-5, Modularity and APIs, and
Portability and Standards), wherein an application has a
first plurality of tailored distinct programming
interfaces (p. 4, "The HPSS software components are
loosely coupled, with open application program interfaces
(APIs) defined at each component level"; see also
Appendix A for a list of tailored APIs)*

A bus, as that term was understood by persons of ordinary skill in the art when the
‘131 patent was filed, is a collection of parallel wires directly connected to a processor
and other computer hardware components.>’

'The Office Action asserts that Teaff discloses a bus in two possible applications
of Teaff. The first application of Teaff matches the understanding of a person of ordinary
skill in the art for a bus as stated above; that is, the recited bus is inherently disclosed as a

component of a computer system. Even under this application of Teaff, it does not

* Ctrl. No. 90/01 1,311, Office Action, mailed Apr. 11,2011, at 2-3, (bold in original)
¥ See Bxhibit A, Wilson Dee. 44 27-30.

15

WI-Apple1701075

Ctrl. No 90/011,311

anticipate when the entire claim is considered, which is required for an anticipation
rejection; that is, Teaff does not disclose “a processing unit’” having all of the
recited limitations, and that is coupled to the bus.

Under another application of Teaff, the Office Action asserts that Teaff’s control
network is a bus, but this is inconsistent with a person of ordinary skill in the art’s
understanding of a bus when the ‘131 patent was filed, and therefore, this application of
Teaff also does not anticipate the claim. The rejection does not allege that every element
of the claim resides on the same computer as would be required even if an inherently
disclosed bus were asserted from one of Teaff’s computers. Still, every element of the
claim must be disclosed in Teaff as being on that same computer.®® The rejection fails to
identify a specific computer that is disclosed as having a bus connected to a memory and
to a processing unit having the characteristics recited in the claim. In fact, the rejection
argues the opposite by citing to Teaff"s sections “Modularity and APIs”, and “Portability
and Standards,” which discloses that HPSS software components are distributed (i.e, not
on the same computer). In these sections Teaff does acknowledge flexibility in its
distributed system in that components can be moved to other platforms, but Teaff never
discloses a single computer that meets the claimed limitations, and accordingly does not
anticipate the claim,

The rejection also improperly alleges that Teaff”s control network anticipates the
claimed bus. At the time the ‘131 patent was filed, a network connection was not
considered to be a bus.**° In his Declaration, Dr. Wilson discusses that at least until
1998, a bus was known by persons of ordinary skill in the art to be a collection of parallel
wires directly connected to a processor and other computer hardware components.”’ This
understanding of what a bus was at the time the ‘131 patent was filed is consistent with

the ‘131 patent’s specification; in particular, its description of the computer system

* See MPEP 2131 citing In re Bond, 910 F.2d 831, 15 USPQ2d 1566 (Fed. Cir. 1990) (“The elements must
be arranged as required by the claim, but this is not an ipsissimis verbis test, i.e., identity of terminology
is not required.”).

¥ See Rxhibil A, Wilson Dec. 9 31.

“See, Exhibit C, Wikipedia - Bus (computing), hitp://en wikipedia.org/wiki/Bus_(computing) - (last
modified on May 25, 2011).

' See Exhibit A, Wilson Dec. 44 27-30.

16

WI-Apple1701076

Ctrl. No 90/011,311

illustrated in FIG. 1. Teaff"s control network as described was not a bus as that term was
understood by persons of ordinary skill in the art at the time the ‘131 patent was filed.
Rather Teaff's control network is a network connection, which does not describe the
claimed bus as those terms were understood at the time the ‘131 patent was filed.

In conclusion, Teaff does not anticipate claim 1 under either of the two alternative
application of Teaff asserted in the Office Action. While a bus may be an inherent
component of a computer, when an internal bus is alleged to anticipate the claim, Teaff
fails to disclose the rest of the recited elements of the claim. Second, Teaff’s control

network is not a bus, and therefore does not anticipate that claim element.

IV. Conclusion

It is respectfully asserted that the rejections have been properly traversed. Patent
Owner therefore respectfully requests that the Examiner reconsider all presently
outstanding rejections and that they be withdrawn, Patent Owner believes that a full and
complete reply has been made to the outstanding Office Action and, as such, the present
reexamination proceeding is in condition for a Notice of Intent to Issue a Reexamination
Certificate (NIRC). If Examiner believes, for any reason, that personal communication
will expedite prosecution of this reexamination proceeding, the Examiner is invited to
telephone the undersigned at the number provided,

Prompt and favorable consideration of this Response is respectfully requested.

skock ko sk sk

The undersigned representative requests any extension of time that may be
deemed necessary to further prosecution of this application.

The undersigned representative authorizes the Commissioner to charge any
additional fees under 37 C.F.R. § 1.16 or 1.17 that may be required, or credit any
overpayment, to Deposit Account 14-1437, referencing Attorney Docket No.
20142.0003.RXUS00.

17

WI-Apple1701077

Ctrl. No 90/011,311

In order to facilitate the resolution of any issues or questions resented by this

paper, the Examiner m

ay directly contact the undersigned by phone to further discussion.

Respectfully submitted,

18

/tracy w. druce/

Tracy W. Druce, Esq.
Reg. No. 35,493

Brian K. McKnight, Esq.
Reg. No. 59,914

C. Gideon Korrell, Esq.
Reg. No. 60,131

Novak, Druce + Quigg LLP

1000 Louisiana Street, Suite 5300
Houston, Texas 77002

(713) 571-3400

(713) 456-2836 (fax)

tracy.druce @novakdruce.com

WI-Apple1701078

Exhibit A — Declaration of
David A. Wilson, Ph.D.

WI-Apple1701079

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Reexamination of Confirmation No.: 1355

U.S. Patent No. 5,915,131 Art Unit; 3992

to KNIGHT, et al. Examiner: CHOI, Woo

Reexam Control No. 90/011,311 Atty. Docket No. 20142.0003. RXUSQ0

Filed November 1, 2010

For: METHOD AND APPARATUS
FOR HANDLING I/O REQUESTS
UTILIZING SEPARATE
PROGRAMMING INTERFACES TO
ACCESS SEPARATE VO SERVICES

Attn: Central Reexamination Unit
Commissioner for Patents

P.O. Box 1450

Alexandria, VA 22313-1450

Declaration of David A. Wilson, Ph.D. Under 37 C.F.R. § 1.132

I, David A, Wilson, Ph.D., declare as follows:

1. 1 have been retained on behalf of Apple Inc. (*“Apple”), the Patent Owner
in the above captioned reexamination. I understand that this reexamination involves U.S.
Patent No. 5,915,131 (“the *131 patent”) entitled “Method and Apparatus for Handling
I/O Requests Utilizing Separate Programming Interfaces to Access Separate 1/0
Services.”

2. I have reviewed and am now familiar with the specification of the ‘131
patent filed on May 5, 19935,

3. [have reviewed and am now familiar with the Office Action dated April
11, 2011 issued by the U.S. Patent and Trademark Office (“USPTO”) for the ‘131 patent
(“Office Action”). Tunderstand that claims 11 and 14 have been confirmed and claims 1-

10, 12, 13, and 15-20 have been rejected in this reexamination proceeding,

WI-Apple1701080

4. I have reviewed and am now familiar with U.S Patent No. 5,566,346 to
Andert et al. (“Andert”) which is a document applied under one 35 U.S.C. § 102 rejection
set forth in the Office Action,

5. I have also reviewed and am now familiar with The Architecture of the
High Performance Storage System by Danny Teaff et al. (“Teaff”) which is a document
applied under another 35 U.S.C. § 102 rejection set forth in the Office Action.

6. In making the statements, and reaching my opinions and conclusions
stated herein, I have considered Andert, Teaff, and the ‘131 patent, including portions of
its file history, in the context of my own education, training, research, knowledge, and
personal and professional experience.

7. My retention is through a consulting services agreement I have with
Silicon Valley Expert Witness Group of Mountain View, CA to provide expert witness
services in this matter. My compensation is in no way dependent on, nor affects the

substance of my statements in this Declaration.

Qualifications

8. A detailed record of my professional qualifications, including a list of
publications, awards, professional activities, and prior testimony is attached to this

Declaration as Exhibit 1,

WI-Apple1701081

The ‘131 Patent
9,

independent claims. Claim 3 recites a computer system comprising a bus, at least one

Claim 3 of the ‘131 patent is generally representative of the other rejected

memory coupled to the bus, and a processing unit coupled to the bus. The memory
coupled to the bus is for storing data and programming instructions that include
applications and an operating system. The operating system comprises a plurality of
servers, A plurality of programming interfaces transfer service requests to one of the
plurality of servers. Each of the plurality of servers responds to service requests from
clients of the separate sets of input/output (/O) services. The processing unit, also
coupled to the bus, runs the operating system and applications by executing programming
instructions. The application has a first plurality of tailored distinct programming
interfaces available to access a plurality of separate sets of /O services provided through

the operating system via service requests.

f\

i. APPLICATION 261 ‘j
FLE |4 BlLocx] scal
MANAGER STORAGE MANAGER
ARl API API
HEp n 204

[=02 [203] [USER MODE WORLD
- KERNEL WORLD
206 | 206 207
Sy .
FiLE BLOCK sest
MANAGER STORAGE MANAGER
FPISERVER! || FPi SERVER] || |FPI SERVER
| FILE BLOCK scsl
| MANAGER STORAGE MANAGER
| FAMRY FANILY FAMILY
208] TTRLLETT ™ 2.5
Ll HFs DISK a
FILE DRIVER Sim
|SYSTEM |
=
FIG. 2

Illustration of Claim 3 of the ‘131 Patent

10. Claim 3 can be better understood with reference to Figure 2 above of the

‘131 patent, together with the specification. As illustrated in Figure 2, the recited

application exists in a “user mode world.” This illustration is consistent with my

WI-Apple1701082

understanding of application programs which reside in the user domain of memory. This
is also consistent with how the ‘131 patent uses the term “application” in both the
specification and the claims.

11. The claimed plurality of servers that are in the operating system are
illustrated in Figure 3 of the ‘131 patent above. The placement of these servers in the
kernel world is consistent with the reference by the ‘131 patent claims and specification
of the servers being located in the operating system. It is generally understood that some
operaling system components reside in the kernel domain memory space, and that
computer system devices are only accessible through the kernel domain. The
significance of this is, as the ‘131 patent explains, “[t]he user domain does not have direct
access to data of the kernel domain, while the kernel domain can access data in the user
domain.” The ‘131 patent at 5:9-11,

12. It is my understanding that the claimed applications reside in the user
domain, the operating system domain includes the kernel domain, and the operating
system domain and the user domain are separate. Such a conclusion is consistent with

the description and claims of the ‘131 patent, and also with my experience.

Application

13. My understanding that the claim term “application” refers to an
application that is in the user domain is based on my reading of the claim, and is fully
consistent with the rest of the ‘131 patent. Specifically, claim 3 requires that the
computer system comprises applications and an operating system, and goes on to specify
that the operating system comprises a plurality of servers, and that the application has a
plurality of tailored distinct programming interfaces. See the ‘131 patent, claim 3. These
tailored distinct programming interfaces are used by the applications to access the servers
of the operating system. Based on my reading of claim 3, and my technical knowledge of
computer programming, it is clear that the application and the operating system are
different entities, and that the application located in user domain is not included in or a
part of the operating system,

14, My understanding that the claimed application is in the user domain and

separate from the operating system is the only understanding that is consistent with the

WI-Apple1701083

specification. In addition to Figure 2, above, showing the applications in “user mode
world,” the specification repeatedly refers to the application as being in the user
domain/user mode world. For example, Figures 3, 4, 7 and 8 consistently show the

applications in the user mode world,

Operating System

15. Claim 3 also recites an operating system, and requires that the operating
system comprise a plurality of servers, and further requires that the I/O services are
provided through the operating system via service requests. Figure 2 illustrates an
example of the plurality of operating system servers, including a File Manager FPI
Server, a Block Storage FPI server, and a SCSI Manager FPI server.

16. The patent uses FPI as an acronym for “Family Programming Interface,”
where the programming interfaces used to request services are defined for each family of
/0O devices.

17. Each of these servers are shown in the “kernel world,” which refers to
memory space with access limited by the operating system. See the ‘131 patent at 5:9-11
(“The user domain does not have direct access to data of the kernel domain, while the
kernel domain can access data in the user domain.”); 5:5-6 (“In one embodiment, the
computer system runs a kernel-based, preemptive, multitasking operation system’); 6:43-
46 (“In one embodiment, a family 305 may provide two versions of its FPI library 303,
one that runs in the user domain and one that runs in the operating system kernel
domain.”) A further point illustrated by the quotes above is that the kernel domain is part
of the operating system.

18. The ‘131 patent treats the operating system domain and the user domain as
separate domains. See, e.g., the ‘131 patent at 6:20-28 and 6:37-46 (discussing that
separate FPI libraries can be accessed from the user domain or the operating system
domain); and 5:8-9 (discussing that the computer system has separate protection
domains). The fact that the ‘131 patent discusses placing separate FPI libraries in
separate domains, depending on function, clearly shows that the ‘131 patent is treating

these two domains as being separate.

WI-Apple1701084

19. Further the concept of a separate operating system domain (or mode) and
user domain (or mode) is consistent with my understanding of computer systems at the
time the ‘131 patent was filed. For example, in Andrew S. Tanenbaum’s seminal treatise
Modern Operating Systems, he explains:

[tlhe operating system is that portion of the software that
runs in kernel mode or supervisor mode. . . . Compilers
and editors run in user mode. If a user does not like a
particular compiler, he is free to write his own if he so
chooses; he is not free to write his own disk interrupt
handler, which is part of the operating system and is

normally protected by hardware against attempts by users
to modify it,

Exhibit - 2, Andrew S. Tanenbaum, Modern Operating Systems,
Prentice-Hall, 1992, at pp. 1-3 (emphasis in original).

Most CPUs have two modes: kernel mode, for the
operating system, in which all instructions are allowed; and
user mode, for user programs, in which I/O and certain
other instructions are not allowed.

Exhibit - 2, Andrew S. Tanenbaum, Modern Operating Systems,
Prentice-Hall, 1992, at p. 19

20. Claim 18 and its dependent claims recite a variation on the “operating
system comprises” limitation found in claim 3, but the effect of the limitation is the same.
Claim 18 recites “operating in an operating system environment.” An operating system
environment refers to the memory execution environment of an operating system at
runtime. My understanding of this term is based on the claim language itself, the
specification and its consistent usage of the term “environment,” and my knowledge as a
person of ordinary skill in the art when the patent was filed.

21. Claim 18 recites “operating in an operating system environment” where
the word “operating” indicates that it is a runtime environment. Additionally, the word
environment indicates a runtime memory space. My understanding of the claim term is
supported by the specification of the ‘131 patent where it is stated:

The operating system running on processor 103 takes care
of basic tasks such as starting the system, handling

interrupts, moving data to and from memory 104 and
peripheral devices via input/output interface unit 140, and

WI-Apple1701085

managing the memory space in memory 104. In order to
take care of such operations, the operating system provides
multiple execution environments at different levels (e.g.,
task level, interrupt level, etc.). Tasks and execution
environments are known in the art,

The ‘131 patent at 6:62-5:3.

In the passage above, the ‘131 patent explains the operating system provides multiple

execution environments, which refers to protected memory spaces, and support for

various software functions provided by the operating system. I note that the paragraph

above states that environments are known in the art, which I provide an explanation

of herein.
22.

The use of the term “environment” to refer to memory space is also

consistent with its use elsewhere in the ‘131 patent specification. Specifically, the ‘131

patent states:

Referring to FIG. 4, three instances of families 401-403 are
shown operating in the kernel environment, Although three
families are shown, the present invention may have any
number of families.

In the user mode, two user-mode FPI libraries, Xlibu 404
and Zlibu 405, are shown that support the FPIs for families
X and Z, respectively. In the kernel environment, two
kernel-mode FPI libraries, Ylibk 406 and Zlibk, 407, for
families Y and Z, respectively, are shown.

The ‘131 patent at 8:34-42,

In the passage above the ‘131 patent discusses operating in the kernel environment,

which is also referring to the runtime memory environment of the kernel space.

23,

Accordingly, based on my broad reading of the claim language, which is

consistent with the specification, my understanding of the claim phrase “operating in an

operating system environment” is that it means the memory execution environment of an

operating system at runtime.

WI-Apple1701086

Server

24. As discussed above, claim 3 further recites that the operating system
comprises a plurality of servers. Claim 3 also specifically recites that “the plurality of
servers responds to service requests from clients of the separate sets of I/O services.”
While the ‘131 patent discusses that the clients can be either an application in the user
domain or another I/O service family, the claim specifically identifies that it is the
application which accesses the I/0 services, and thus claim 3 is directed to an application

being the client that is requesting the service,

25. Tanenbaum defines applications as follows:

Finally, above the systems programs come the applications
programs. These programs are written by the users to solve
their particular problems, such as commercial data
processing, engineering calculations, or game playing.

Exhibit — 2, Andrew S. Tanenbaum, Modern
Operating Systems, Prentice-Hall, 1992, at p. 3

26. The function of the servers is to provide access to a distinct family of
services. The *131 patent at 5:59-62. The servers provide access to these services by
responding to service requests made by the application programs. The ‘131 patent at
6:47-49. Application programs initiate service requests by sending service request using
the programming interface associated with the family of a particular service. The ‘131
patent at 9:1-3, The ‘131 patent explains that “[a]ccess to services is available only
through an I/O family’s programming interface.” The ‘131 patent at 5:29-30. As shown
in Figure 2 of the ‘131 patent (above), the servers reside in the kernel domain, and as
explained in more detail above, access from applications in the user domain is prevented,
except through a programming interface made available by the operating system. Thus,
access to the family services by applications is only available through the programming

interface for that family.

WI-Apple1701087

Bus

27. Claim 1| recites a bus, and a memory and processing unit coupled to the
bus. A bus, as that term was understood by persons of ordinary skill in the art when the
‘131 patent was filed is a collection of parallel wires directly connected to a processor
and other computer hardware components. Often the wires corresponded to one or more
pins on the processor. In another book Tanenbaum provides the following explanation of

a microcomputer bus from 1984:

The components of a microcomputer, the microprocessor,
memory, and 110 controller chips, are connected by a
collection of parallel wires called a bus. The lines (wires) in
the bus can be classified as address, data, or control. They
correspond closely but not exactly, to the microprocessor's
pins. Several buses have been standardized by IEEE and
other organizations to facilitate interconnection of
processors, memories, and other devices from different
vendors.

Exhibit — 3, Andrew S. Tanenbaum, Structured Computer
Organization, Second Edition, Prentice-Hall, 1984, at p. 95.

28. The concept of a bus was still the same in 1995, when the ‘131 patent was
filed, and even beyond to at least 1998 when Mark Edmead and Paul Hinsberg wrote

their book Windows NT Performance, where they explain:

When a program executes, the operating system must first
get the program from the hard drive. Part of the program is
then transferred from the disk (or whatever media the
program resides in). Most Intel-based systems provide the
option of installing interface cards into different bus types.
The system contains a bus controller that is responsible for
servicing the request to and from the peripheral device...

WI-Apple1701088

Intel systerns provide an 8-bit, 16-bit, or 32-bit bus.
Obvicusly, the 32-bit bus is ideal implementation. The
stower of the available bus architectwes is the ISA
(fndustry Standard Architecture) bus. The ISA bus has a
transter vate of SMB/sec. ISA includes both a 8-bit apd 16~
bit 110 bus. A Peripheral Component Interconnect (PC
bus, on the other hand, is a 32-bit bus, which means that it
can address the full 4GB. The PCI bus is also a 133MB/sec
bus, which is a significant improvement from the ISA bus
architecture.

Exhibit — 4, Mark Edmead and Paul Hinsberg, Windows NT
Performance: Monitoring, Benchmarking, and Tuning, New
Riders Publishing, 1998, at pp. 10-11.

In the passage above, Edmead and Hinsberg discuss common buses such as the ISA bus
and the PCI bus, which are both a collection of parallel wires directly connected to a

processor and other computer hardware components.

29. The fact that a bus was known to be a collection of parallel wires directly
connected to a processor and other computer hardware components in before and after
1995 is further exemplified by the ‘131 patent’s description of its computer system

illustration in FIG. 1. The ‘131 patent states:

The computer system of the present invention also includes
an input/output (I/O) bus or other communication means
101 for communication information in the computer
system. A data storage device 107, such as a magnetic tape
and disk drive, including its associated controller circuitry,
is coupled to I/O bus 101 for storing information and
instructions. A display device 121, such as a cathode ray
tube, liquid crystal display, etc., including its associated 4
controller circuitry, is also coupled to I/O bus 101 for
displaying information to the computer user, as well as a
hard copy device 124, such as a plotter or printer, including
its associated controller circuitry for providing a visual
representation of the computer images. Hard copy device
124 is coupled with processor 103, main memory 104, non-
volatile memory 106 and mass storage device 107 through
I/0 bus 101 and bus translator/interface unit 140. A modem
108 and an ethernet local area network 109 are also coupled
to I/O bus 101.

The ‘131 patent at 8:34-42.

10

WI-Apple1701089

As explained in the passage above, the ‘131 patent also discusses and illustrates a

processor and a memory coupled to an I/O bus.

30. As demonstrated above, buses were commonly known in the computing
arts at least as early as 1984 and since that time they were known to be at least a physical
connection between a processor and another device, More accurately, buses were a
collection of parallel wires directly connected to a processor and other computer
hardware components.

31. In 1995 when the ‘131 patent was filed, a person of ordinary skill in the

art, such as myself, would not have considered a network connection to be a bus.

Activation Model

32. Claim 7 further recites that the operating system further comprises a
plurality of activation models. Each of the plurality of activation models is associated
with one of the plurality of servers to provide a runtime environment for the set of 1/0
services to which access is provided by said one of a plurality of servers. What I believe
this to mean for a person ordinarily skilled in the art at the time of the filing of the ‘131
patent (May 5, 1995) is that the activation models are defining when and how tasks are
performed by the operating system I/O servers (i.e., the runtime environment) in response
to a I/O service request from an application program.

33. Asrecited in the claims, the activation models are a part of the operating
system, and each is associated with one of the operating system I/O servers. The ‘131
patent specification provides a number of examples of activation models and explains
how each controls how the respective server responds to service requests.

34, For example, the ‘131 patent explains that an operating system [/O server
family associated with the “Single-Task [Activation] Model” runs a single monolithic
task which is fed from a service request queue or a plug-in generated interrupt. The ‘131
patent at 10:53-63. As such, the tasks are executed asynchronously but no more than one
at a time. The ‘131 patent explains that such a model is ideal for keyboard or mouse
devices, or other devices that do not require more than one I/O request to be handled at

once. The ‘131 patent at 11:37-53.

11

WI-Apple1701090

On the other hand, an operating system I/O server family associated with the
“Task-Per-Request [Activation] Model” can process multiple /O requests
simultaneously. The ‘131 patent at 13:25-34. The servers associated with this activation
model do this by blocking tasks until a request is complete. The ‘131 patent at 13:13-15.
The ‘131 patent explains that the task-per-request activation model is ideal for operating
system services such as a file manager. The ‘131 patent at 13:25-34, Thus, the activation
models provide an operating system runtime environment that is tailored for each family
to best utilize the unique characteristics of the I/O services or devices associated with

that family,

Andert

35. Andert discloses an object-oriented input/output system for interfacing
with a plurality of I/O devices. Andert at 1:52-55. Andert makes use of a plurality of
different frameworks configured to interface between applications and I/O devices.
Andert at 2:6-18. Andert states that these frameworks will assist developers in creating
low-level 1/0O drivers by providing design and architectural guidance to the developer.
Andert 5:38-40.

36. The state of the art around the time the Andert reference was filed was for
an operating system to provide application programs with a single programming interface
for accessing all of the I/0 services available through the computer system. For example,
the Macintosh OS offered an interface that included commands such as OpenDriver,
CloseDriver, FSRead, FSWrite, Control, Status, and KillIO. Although
some of these commands would not be applicable to certain I/O devices, the interface
was the same for all devices nonetheless.

37. As another example of the state of the art when the Andert reference was
filed, consider Tanenbaum's description of “Input/Output in UNIX”, where each /O
device is treated like a file, so that “No special commands or system calls are needed.

The usual READ and WRITE system calls will do just fine.”

12

WI-Apple1701091

T34, FepatOaptpet I L0X

Like all computony, those tenning (e huve MO devicws such a8 wrosinaly, digky,
printers, aod netwavks soongeted e then, Some wivy is nooded 10 allwr grogesms
aecess these givices, Although vactous sclutions are possibly, the URNIX pae 5 0
integrase dhorn i the fHle systars ae what are onlled spesdnd filer, Booh I dovioe s
sesigned 2 peth name, aseally By e, By exsmple, S pednter might b ddewilp, 1o
i, osight e Sdewdtened, und the noswark might by Sdveiney,

Thess spacial Res oan be avcossed e aame way ¢ any wher flew. No speviad
vomsmands o system vallyo e oveded, The asuul RESD and WRIE systoms calls will
o fust Sne. For example, the scavenand

op Yile Jdevilp

copies the ffe o printer, ssusing R B primed {assuming that this & paombeed),
Prograres can open, sesd, and write special fles e st vy 88 they do regalss
fites. R fach <p i the above exampie 18 oot sven swaes Sl # i pimtiog. To this
way, nespeoial mechaninm 1 aeeded for dolog A0,

Exhibit — 2, Andrew S. Tanenbaum, Modern Operating Systems,
Prentice-Hall, 1992, at pp. 290-291.

38. This again shows the state of the art as not requiring or providing tailored
distinct APIs for accessing 1/0 services.

39. The front page of Andert shows that it was first assigned to Taligent Inc.,
which was a joint venture between IBM and Apple, the makers of separate and
incompatible computers and operating systems. Due to this cross-platform collaboration,
an additional motive behind the Andert invention was to come up with a solution that
avoided changes to or reliance upon a particular operating system. Such a motivation is
apparent in the many places in Andert where it is explained generally that its system
supports multiple operating systems. See, e.g., Andert at 1:47, 2:16-17, 2:59, and 16:5-
27. In addition, the Andert reference specifically explains that components of its system,
such as the Device Access Managers, are placed in the user-mode. Andert at 9:48-51.

40. Andert draws a clear boundary between the operating system (supervisor
mode) and outside the operating system (user mode). For example in Figure 3, below,
Andert shows that the Client IO Services Interface and the Device Access Managers are

in user mode, while the Interrupt Services are in the Supervisor Mode,

WI-Apple1701092

Cliarg K2 Sevices

{Privsival Kargwaes)

Durvicn Acceng .
Managar 3 :
o DS b T \

{User Mode) |
{Sugervisor Wu“ﬁ/\k

Gonjral daiee
erupt Notifcatien Inierrupt

2

Iretagrugst
Dispainh

LAY

FIGURE 3
Andert Figure 3

41, Both the Andert reference and the ‘131 patent use the terminology “user
mode.” I understand both documents to be using this terminology consistently to
distinguish that these services in the user mode are outside of the operating system. I
further understand that the supervisor mode in Andert is used to delineate the operating
system boundary. I further understand the use of the term kernel in both Andert and the
‘131 patent to have the same meaning in both documents. I further understand that the
“Supervisor Mode” referred to in Andert Figure 3 above has the same meaning as

“Kernel World” in the ‘131 patent,

Teaff

42. Teaff discloses a distributed high performance storage system (HPSS).
The HPSS architecture uses a high-speed network for data transfer and a second network
for control. Teaff, p. 2. The control network uses the Open Software Foundation's
Distributed Computing Environment Remote procedure call technology. Teaff, p. 2.

43. Teaff discloses a layered system wherein the HPSS layer is built on a
Distributed Computing Environment (“DCE”) layer, which is built on top of an

14

WI-Apple1701093

Operating System layer. Figure 3, below, illustrates this arrangement, In this
arrangement, the HPSS layer utilizes services from the DCE layers below it. See Teaff,
p. 4 (“These requirements are accomplished using a client/server architecture, the use of
OSF's DCE as its distributed infrastructure, support for distributed file system interfaces
and multiple servers...”); Teaff, p. 7 (“HPSS uses OSF's DCE as the base infrastructure
for its distributed architecture.”).

44. Figure 3 further indicates that HPSS does not directly access any

Operating System services.

] HPSS ™
N errry S
B)
C A
& 1@
X in
$ a
" ooE DR £
. Distritnsted Dirsetory M
1 : Y &
P T Servies Satvice 2"1
3 L] A s rre e T g | !

i DCE Rempis Progedure {,:ﬁ% \ /
' OCE Threads |

[Operaling Syatam ang Trarsport Swr»ftf‘ME

Figwre ¥ HPSS DOE Avchitecture Tofrasuucture

Teaff Figure 3

45. Teaff's arrangement demonstrates that the HPSS layer is not an operating
system layer. The fact that the HPSS layer utilizes services from the layers below is
inconsistent with the concept of an operating system, as discussed in paragraphs 15-19
above. As discussed in paragraph 15, the operating system provides services to the
higher layers (applications), while limiting access to the operating system memory space.
In paragraph 17, I discuss that the ‘131 patent's discussion of operating systems is
consistent with how a person of ordinary skill in the art understood the concept of an
operating system when the 131 patent was filed. In paragraph 18, I further discuss that
the operating system domain and user domain are separate domains. All of this is

inconsistent with the HPSS layer being the operating system. Specifically, the HPSS

15

WI-Apple1701094

layer accesses services of the layers below it. Further, the HPSS layer cannot be both the
operating system and the user domain because they are separate domains.

46. The fact that the HPSS layer is not an operating system layer is further
supported by Teaffs express design objective to be portable to many different vendor's
platforms. Specifically Teaff states:

Another important design goal is portability to many
vendor's platforms to enable OEM and multivendor
support of HPSS. HPSS has been designed to run under
Unix requiring no kernel modifications, and to use

standards based protocols, interfaces, and services where
applicable,

Teaff, p. 5.

I hereby declare that all statements herein of my own knowledge are true and that all
statements made on information and belief are believed to be true; and further that these
statements were made with knowledge that willful false statements and the like so made
are punishable by fine or imprisonment, or both, 18 U.S.C. § 1001, and that such willful

false statements may jeopardize the validity or enforceability of the ‘131 patent.

Date: June 13,2011 &M &) . %}K:‘Zﬂfﬁ)\

David A. Wilson, Ph.D.

16

WI-Apple1701095

Exhibit - 1

WI-Apple1701096

hutp://dave-wilson.org/Dave_Wilson.html Dave Wilson

David A. Wilson, Ph.D.

4181 Horizon Court
San Jose, CA 95148
(408) 532-1663

(650) 575-5687 (cell)
wilson99 @pacbell.net

Expertise

» Object-Oriented Programming

e Java technologies on the server and client

o Java Swing programming

C++, Smalltalk, Objective-C, and other object programming languages
XML/SOAP Web Services

Microsoft .NET Technologies

Integrated Development Environments and programmer tools
Distributed Computing, including CORBA and Java RMI

» Graphical User Interfaces and user interface design

 Software Development Processes and Practices

» Software Reuse

» Software Frameworks and Design Patterns

Artificial Life technologies such as Genetic Algorithms

Visual Programming Languages

Bigital Photography

Organizing, summarizing, and presenting complex technical material
Ultrasonic Imaging Systems for Medical Diagnosis

Professional Summary

Over twenty years experience at developing and teaching advanced technologies. Dr. Wilson has
co-developed a number of innovative software products, including a dataflow-based visual programming
language for doing complex numeric and financial calculations, two C++ applications frameworks,
various Java tools for managing billing systems, and a Java-based prototype of an automated teller
machine. He has also helped developed a number of innovative hardware products, including a real-time
UV-Visible Spectrophotometer, and numerous real-time ultrasonic imaging systems for medical
diagnosis. Dr. Wilson is recognized as an industry technologist and spokesman with excellent verbal and
written communication skills.

lof6

WI-Apple1701097

hitp://dave-wilson.org/Dave_Wilson.html Dave Wilson

Employment History

Independent Consultant [1983 - present]

« Highly experienced technology consultant specializing in object-oriented development.

 Provides technical expertise to law firms specializing in intellectual property litigation.

« Software development using a variety of programming languages, including Java, C4++,
Objective-C, Smalltalk-80, and Object Pascal.

¢ Co-developed Spreadsheet 2000, an innovative application that provided the user with a visual
programming language for performing complex numeric calculations and {inancial modeling.

¢ Co-developed QuickApp, a C++ applications framework used to develop a number of commercial
Macintosh applications.

¢ Co-developed MicroGA — a C++ framework for solving optimization problems using the artificial
life technique known as Genetic Algorithms.

» Projects for major clients described below.

Portal Software, Inc: Senior Architect [2000 - 2002]

» Architected and developed Storable Class Editor and other Java-based client applications that
allow customization of Portal’s real-time billing system.

e Architected and prototyped various systems monitoring and management tools.

e Architected and prototyped an XML/SOAP-based Web Service to support Portal’s Infranet
Content Connector.

¢ Member of the Architecture Steering Group.

» Defined the software development process used throughout the Product Development
organization.

 Lived in Germany for five months, helping with technology transfer between Portal’s European
and US-based product development organizations.

» Helped drive Engineering’s mentoring program; helped engineers with career and personal
development.

¢ Developed and presented in-house training on Java, CORBA, O-O Frameworks, XML Web
Services, and other subjects

Sun Microsystems: Contractor [1999 - 2000]

» Developed the first hands-on Jini and JavaSpaces programming “Code Camps”. Invented a
technique for dynamically assembling GUI applications from independent Jini services.

¢ Developed Sun’s first “Code Camp” on Java performance tuning. Showed how to make Java
clients and servers run faster using performance profiling tools and code optimization.

e Trained three other trainers on how to develop courses and give effective technical presentations.

Sun Microsystems: Contractor [1998]

20f6

WIi-Apple1701098

hup:/fdave-wilson.org/Dave_Wilson.html Dave Wilson

In late 1998, Sun introduced their “Java 2” technology with a special press presentation at the Java
Business Expo in NYC.

Developed a prototype "Accessible" Automated Teller Machine for that introduction that featured
voice synthesis (for blind users), high-contrast screen display modes (for visually-impaired users),
and support for 10 languages including Chinese, Japanese, and Korean.

This system was demo’ed on stage by a blind user (and her Guide Dog).

User preferences were programmed into a Java Ring using the JavaCard APIs.

The user interface was programmed in Swing, while RMI servers delivered functionality to the
client.

Apple Computer:Contractor [1994 - 1996]

« In charge of all programmer training for the OpenDoc Development Framework (ODF)
» Developed and taught 5-day class on using C++ and ODF to develop new OpenDoc components.
» Wrote many ODF sample programs that were shipped with the product itself.

Apple’s Pink Project/Taligent, Inc.: Contractor [1989 - 1994]

» Programmer training and sample programs

Hired as the first contractor for Apple’s super-secret Pink project to develop C++ sample programs
and assemble hands-on programming classes for new employees, and eventually, for third-party
developers.

¢ Continued in this role when Apple and TBM formed their $200 million Taligent joint venture.
Developed a 3-day class on Writing Reusable C++ Frameworks , and presented it all over the US,
in the UK, in Australia, and at IBM’s Yamato Research Labs outside of Tokyo.

Xerox and ParcPlace Systems: Contractor [1988]

» Developed Smalltalk programming classes
» Developed the first ParcPlace programmer training classes for Smalltalk-80.

Apple Computer: Contractor [1984 - 1989]

» Developed Apple’s classes on Macintosh programming,.

» Trained other trainers to help build Apple’s “Developer University”.

e Trained developers on using Pascal and C to do procedural programming using the Macintosh
Toolbox.

Developed Apple’s classes on using Object Pascal and C++ for object-oriented programming
using the MacApp applications framework.

SRI International: Member of Technical Staff; Director, Bio-Engineering Research Center [1978 -
1983]

» Developed research instruments for medical diagnosis and therapy for the National Cancer
Institute and the National Heart, Lung, and Blood Institute.

e Managed a team of 15 researchers in developing new products for biomedical research and
ultrasonic imaging.

3of6

WI-Apple1701099

hup:/fdave-wilson.org/Dave_Wilson.html

Hewlett-Packard Laboratories: Member of the Technical Staff [1970 - 1978]

Dave Wilson

+ Helped invent and develop a new real-time Ultraviolet-Visible Spectrophotometer for chemical

analysis using an Acoustically-Tuned Optical Filter,

* Researched and started H-P’s first project on real-time, two-dimensional, B-Scan ultrasonic
imaging for medical diagnosis. This eventually led to a series of products with which H-P became

the world leader in cardiac ultrasonic imaging.

Litigation Support Experience

o Wilson Sonsini Goodrich & Rosati
o Date: 2002 - 2003

o Project: Patent infringement, prior-art research and analysis

o Status: Ongoing
e Howrey Simon Amold & White
o Date: 2000 - 2001
o Client: Sun Microsystems
o Project: Patent/technology survey
o Status: Completed
» Howrey Simon Amold & White
o Date:1998 - 1999
o Client: Sun Microsystems
o Project: Patent/prior-art research
o Status: Completed
« Howrey Simon Arnold & White
o Date:1997

o Client: Apple Computer (v. Articulate Systems)
o Project: Patent infringement, created expert reports and depositions

o Status: Completed

Education

Ph.D. Applied Physics Stanford University
M.S. Applied Physics Stanford University

B.S. Engineering Physics Cornell University

U.S. Patents

o Patent #4,482 834
o Issue Date:November 13, 1984
o Acoustic imaging transducer
o Assignee: Hewlett-Packard

e Patent #4,442,713

40f6

WI-Apple1701100

http://dave-wilson.org/Dave_Wilson.html Dave Wilson

o Issue Date:April 17, 1984
o Frequency varied ultrasonic imaging array
o Assignee: SRI International
o Patent #4,446,740
o Issue Date:May 8, 1984
o Frequency controlled hybrid ultrasonic imaging arrays
o Assignee: SRI International
¢ Patent #4,471,785
o Issue Date:September 18, 1984
o Ultrasonic imaging system with correction for velocity inhomogeneity and multipath
interference using an ultrasonic imaging array
o Assignee: SRI International

Commercial Software Products

s Spreadsheet 2000. A Macintosh application published in 1997 by Casady & Greene. ISBN
1-56482-141-2

o Keep It Simple Spreadsheet. A Macintosh application published in 1996 by Casady & Greene.
ISBN 1-56482-101-3 .

o QuickApp. A C++ applications framework published by Emergent Behavior in 1993.

Publications (1982 to Present)

o Wilson, David A., The Java Guidelines — Creating fast, maintainable, reliable, portable Java
programs, published internally by Visa International in 1999 for use by their engineering teams.

e Wilson, David A., et. al., C++ Programming With MacApp, Addison-Wesley, 1990, ISBN
0-201-57021-1.

» Wilson, David A., et. al., Programming With MacApp, Addison-Wesley, 1990, ISBN
0-201-55062-8,

» Wilson, David A., Cluss Diagrams: A Tool for Design, Documentation, and Modeling, Journal of
Object-Oriented Programming, January/February 1990, pp. 38 — 44.

o Wilson, David, The Sordid Truth About Apple: Why Don't Those Idiots Ever Do Anything Right,
MacTutor (now MacTech), December 1990.

» Wilson, David A., Introduction to MacApp & Object Programming , published by MacApp
Developer’s Association, April 1989.

« Wilson, David, MacApp Objects, MacTutor (now MacTech), September 1987, pp. 41 ~ 46.

Goodin, Sue and Wilson, Dave, Programming the New Macs, MacTutor (now MacTech), May

1987.

Wilson, David, Resource Formats for Asm, Rimaker and Lisa , MacTutor (now MacTech), June

1986.

Wilson, David A., et. al., Practical BASIC Programs, IBM Personal Computer Edition,

Osborne/McGraw-Hill, 1982, ISBN 0-931988-80-2.

Formal Conference & Panel Presentations, (1988 — Present)
e Wilson, David A., A Framework for Assembling Client Applications from Modular Components,

Sun’s JavaOne Conference 2002, San Francisco, March 2002,
» Wilson, David A., Designing Object-Oriented Frameworks, Tth IBM Conference on Object-

Sof6

WI-Apple1701101

http://dave-wilson.org/Dave_Wilson.html Dave Wilson

Oriented Software Development, July 1994,

¢ Wilson, David A. and Wilson, Stephen D., Writing Frameworks — Capturing Your Expertise About
a Problem Domain, Conference on Object-Oriented Programming Systems, Languages, and
Applications (OOPSLA) 1993,

e Wilson, David A., Developing a MacApp Application, MacWorld Expo Tokyo, February 1991,

» Dan Shafer, David A. Wilson, Jeff McKenna, John R. Pugh, Adele Goldberg: Panel: Teaching
OOP.OOPSLA 1988.

« Numerous Apple World-Wide Developer Conferences and Apple European Developer
Conferences.

Professional Associations

e Member, IEEE

60f6

WI-Apple1701102

Exhibit 2

WIi-Apple1701103

Fork. ({1

%333’3‘&}5

\[

WI-Apple1701104

Tanenbaun, Anarsy $. .
Modursn psrating aysTens 7 Angeaw S Taemnbaum.
p. QA
tacludes Gisliegraphiond refarsnces R 1OdEK.
1800 0= 15-G8A18T-0
1. CPECAT NG NYSTIRE (Goupyters)
GATR, THO0STIBE. - 1RNR
ool A Fvde20

f. Title,

Acquisitions editor: Tom Molllwes
Production supravisor: Bagani Mandozx da Lot
Manufacturing buyoer: Dave Dickey
Jezments oditor: Alice Dworkin
Traerlor designeri Ardrow 8, Tanenbaum

| © 1592 by Prontice-Hall Ine,
A Simon & Schusier Company
S Eaglewood Cliffs, Now Jersey G632

S1~A00 10
244

This suthiorand pu rofaﬁl'm&vcumdwbeucﬁwin:mmm. These
sffois inclide th development; recarch, and testing of thetheories ad programs o determine their
 effexsivencas, Tho author snd publisher make no waraanty of sy kind, expmasd o imphied, with
mwm-mmm-mmmmmmmdmdhu\hm The author &nd } .
shall not be Habie in sny event for incidental oe consquential dacages in connection with, or adsing
out of, the fumishing, performance, oruse of these progrnss.
All rights reserved, No part of tis book may be
‘reproduped, in any fopa of by any means,
without pasmission in wlting fros the publisher.
Prinved in the United Siates of America TRADEMARK INFORMATION
1G9 B T 6 543 2 i lBM»PCh-luwwvdu:dkad
Corporstion,
UNIX is s registered tdamark of ATET
(Bell Labovmsorisy,). -
TSBN 0-13-588387-0 FDP I and VAX are reginerod
Co wademarks of Digital Bguiperent
MS-DOS is & trademark of Microsaft
gmﬁwa“ﬁw éug) Lirnitad, London Atard iy s trademark of Atari
Srentico-Hall of Aus Pry. Limited, Sydue Corporalacn,
Pm?&-mnc:mmm oo ? SPARC is a trademark of Sun
Prentice-Hall Hispenoamericans, 8.4, Maxico Microsystems.
Prentice-Halt of Indis Private Limited, New Delhi Mmcmmmww\wk
Presioe-Hal of Jupan, Inc., Tokyo W)
Simon & Schusser Ada Pre. 144, Siagopore Inuliu-xagigmd trndernak of Intel
Bditors Prentice-Hall do Brasil, Ldn., Rio d¢ Janiro Corporstion.

WI-Apple1701105

1

INTRODUCTION

ithout its software, a computer is basically a useless lump of metal. With is

are, a computer can store, process, and retrieve information, find spelling errors

waseripts, play adventure, and engage in many other valuable activities to carn
:p. Computer software can be roughly divided into two kinds: the system pro-

, which manage the operation of the compuier itself, and the application pro-
. which solve problems for their users. The most fundamental of all the system

wns is the operating system, which controls all the computer’s resources and

es the base upon which the application programs can be writien,

‘modern computer system consists of one or more processors, some main

ry {often known as “‘core memory,” even though magnetic cores have not been

in memories for over a decade), clocks, terminals, disks, network interfaces, and

input/output devices. All in all, a complex system. Writing programs that kecp

of all these components and use them correctly, let alone optimally, is an

mely difficult job. If every programmer had to be concerned with how disk
es work, and with all the dozens of things that could go wrong when reading a
Yock, it is unlikely that many programs could be writien at ail.

any years ago it became abundantly clear that some way had to be found to
Id programmers from the complexity of the hardware. The way that has gradu-

volved is to put a layer of software on top of the bare hardware, to manage all

-of the system, and present the user with an interface or virtual machine that is
er to understand and program, This layer of software is the operating system, and
as the subject of this book,

The situation is shown in Fig. 1-1. At the bottom is the hardware, which in many

|
WI-Apple1701106

2 ' INTRODUCTION CHAP. 1

cases ig itself composed of two or more layers. The lowest layer containg physical
devices, consisting of integrated circuit chips, wires, power. supplies, cathode ray
tubes, and similar physical devices. How these are constructed and how they work is
the province of the electrical engineer, '

“Bapking. | Arling Advirtury -
gysiem reservgtion games Anmlication programs
Gompiers - | Edi Command
Gompitery ditors ftarpratar Systam
" " programs
Opereting system .
Maching tenguage
Micropragramming Hardware

Physicel gevices

Fig, 1-1. A computer System consists of hardware, system programs, and application
programs,

Next comes a layer of primitive software that directly controls these devices and
provides & cleangr interface o the next layer. This software, called the micropro-
gram, is usually- located in read-only memory. It is actually an interpreter, fewching
the machine language instructions such as ADD, MOVE, and JUMP, and carrying

(hem out as & series of little steps. To carry out an-ADD instruction, for example, the .

mictoprogram must determine where the numbers to be added are located, fetch
them, add them, and store the result somewhere, The set of instructions that the
microprogram inferprets defines the machine language, which is not really part of
the hard machine at all, but computer manufacturers always describe it in their manu-
als as such, so many people think of it as being the: real “machine,” On some
machines the microprogram is implemented in bardware, and is not really a distinct
layer. o -

The machine language typically has between 50 and 300 instructions, mostly for
_moving data around the machine, doing arithmetic. and comparing values. In this
layer, the input/output devices are controlled by loading values into special device
registers. For example, a disk can be commanded: 1o read by loading the values of
the disk address, main memory address, byte count, and direction (READ or WRITE)
ito its registers. In practice, many mOIC pRrameters are needed, ‘and the status
returnied by the drive after an operation is highly complex, Furthermore, for many
YO devices, timing plays an important role in the programming. :

A major function of the operating system is to hide all this complexity and give
the programmer & more convenient set of instructions o work with, For example,
READ BLOCK FROM FILE is conceptusily simpler than having to worry about the
details of moving disk heads, waiting for them to settle down, and so on.

On top of the operating system is the rest of the system software, Here we find
the command interpreter (shell), compilers, editors and similar application-
independent programs, It is important 10 realize that these programs are definitely

WI-Apple1701107

SEC. 11 WHAT 1S AN OPERATING SYSTEM? 3

not part of the operating system, even though they are typicaily supplicd by the com-
puter manufacturer. This is a crucial, but subtie, point. The operating system is that
portian of the software that runs in kernel mode or supervisor mode. [tis protected
from user tampering by the hardware (gnoring for the moment some of the older
microprocassors that do not have hardware protection at all). Compilers and editors
run in wser mode, [f 2 user does not fike @ particular compiler, het s free to write
Bris own if he so chooses; he s not fiee fo write his own disk interrupt bandier, which
is part of the operating system and is norowadly protected by hardware against
whtenpts by users o modily it

Finally, above the system programs come the application progeuns. These pro-
prafes are writien by the asers tosolve their panticular problems, such as commercial
data processing, epgineering calculnidng, o game playing.

L1, WHAT IS AN OPERATING SYSTEM?

Most computer users have had some experience with an operating system, but it
is difficult to pin down precisely what an operating systemt is. Past of the problem is
that operating systems perform two basicalfy unrelated Functions, and depending on
who is dng the talking, you hear moatly about one function or the other. Let us
now took at both, '

1.L.1. The Operating System as an Extended Machine

As menationed carticr, the architecture (instruction set, memory orgameation, 10O
and bus stractorc of most computers at the muchine language level is primitive and
awkward to program, especially Tor input/output. To muke this point more concraie,
fed ug briefly look at how Hoppy disk PO s done using the NEC PDT05 controller
chip, which is used on the 1BM PC and many other personal computers, (Throaghout
this boak we will use the wrms > foppy disk™ and “diskette” imerchangeably.t The
PD763 has 16 commands, cach specified by loading between 1 and 9 byles into a
devive register. These conunands arg for reading and writing data, moving the disk
arny, and formatting tracks, as well ay initializing, sensing, rescuing, and recalibrating
the controfier and the drives,

The ssost basic vommands are READ and WRITE, each of which requires 13
parameters, picked into 9 bytes. These parameters specify such items as the addiess
of the disk block 10 be read. the number of sectors per track, the recording mode used
on the physical medium, the intersector gap spacing, and what o do with a deleted
data-address-mark. 11 you do not understand this mumbo jumbe, do not worry, that is
precisely the point-—it is vather gsoteric. When the operation is completed, the con-
woller chip returns 23 status and ervor ficlds pucked Lto 7 bytes, Ax i this were ot
enough, the floppy disk programmer must also be constanily aware of whether ihe

1
T He T showhd be read an The o sha ™ throughixt g ook

WI-Apple1701108

EC, 1.4 OPERATING SYSTEM STRUCTURE

4.1, Maonolithic Systems

By far the most common organization, this approach might well be subtiled
he Big Mess.” The stwucture is that there is no structare, The operating sysiem is
dures, each of which can call any of the other ones
hesever it necds to.. When this technique is used, cach procedure in the system has
 well-detined interface in terms of parameters and results, and each one is free 10
call any other ong, it the latler provides some useful computation that the former
reeds.

To construct the actual object program of the operating system when this
pproach is used, one compiles all the individuad procedures, or files containing the
rooedures, and then binds them all together into 4 single object Tile with the linker,
I erms of information hiding, there is essentially none-—every procedure is visible
to every other ong (as opposed 10 a stucture containing modules or packages, n
which much of the information is local 10 a module, and only officially designated
exitry points can be called from outside the module), ‘ ‘

Even in monolithic systems, however, it is possi
ture. The services {system cails) provided by the operating system are sequested by
giting the parameters in well-defined places, such as in registers or on the stack, and
hen exsouting a spectal trap instruction known as a kernel call or supervisor cail,

L This ingtruction - switches the machine from user mode to kernet mode {also
known & supervisor mode), and transfers control 1o the operating sysiers, shown as
event (1) in Fig, 1-8, (Most CPUs have two modes: kernel mode, for the operuting
s, in which all instractions are allowed; and user mode, for user programs, in
hich 1O and certain other instractions are nol allowed.)

sritten as a vollection of proce

tic 1o have at least a Hde struc-

U

LISRE PURYrseas
G RL
Ligee e

J Usert program 2 ,j,

Lspe program 1

o
™1
B -

\ Gervite \‘
1 {'g\ L\‘ e {iroeedurs i Opeeang
AN 4 SYSLIND
g
kernet madig

e

e Pispated by

e 8B ETAGH Y T

?.,__._.

Fig. 1-8. How a system call Can be made: (1) User program traps to the kersel. (2
Qperafing system determines service number requined, (3) Operating system focales
and calls service procedurg. (H O ontrol isrsumed 10 User program.

s the parameters of the call 10 deernine

as (2) in Fig. 1-8. Next, the operding
eimer to the procedure th

“The operating system then CXANine
swhich system call is to be carried oul, shown
system indexes into a table that contains in slot & a p

WI-Apple1701109

290 CASE STUDY 1: UNIX CHAP. 7

the lock has been refeased, In order to successfully place a lock, every byte in the
region 1o be locked must be available.

‘When placing a lock, a process. must specify whether it wants to block or not in
the event that lock cannot be placed. If it chooses 0 block, when the existing lock
has been removed, the process is unblocked and the lock is placed. If the process
chooses not to block when it cannot place a lock, the system call returns immediately,
with the status code telling whether the lock succeeded or not.

1.ocked regions may overlap. In Fig. 7-11{a) we see that process A has placed a
shared tock on bytes 4 through 7 of some file. Later, process 8 places a shared lock
on bytes 6 through 9, as shown in Fig. 7-1 1(b). Finally, C locks bytes 2 through 1i.
As long a5 all these locks are shared, they can co-exist.

Process A’y
shared
tock
A
lanl " b
YT, 7
a) : e 6 A sl s ol]l
Wyojtiz SN2 5 0 '

A’y shared lock

PRI YOLrr o e i

: L
wlol1]2 s Yakiss

R ER - :
&9'\\ 100 N1z 13 148

DN

1K

w ol 1 E

: Y
£3's shared jock

Fig, 711 (a) A file with ong lock, (b) Addition of u second lock. (¢} A third lock.

Now consider what happens if a process iries to acquire an exclusive lock to byte 9of
the file of Fig: 7-11(c), with a request to block if the lock fails. Since two previous
locks cover this block, the caller will bleck and will remain blocked until both 8 and
¢ release their locks. :

7.3.4. Input/Output in UNIX

Like all computers, those running UNIX have /O devices such as terminals, disks,
prinsers, and networks connected to them. Some way is needed to allow programs to
access these devices. Although various solutions are possible, the UNIX one is to
integrate them into the file sysim as what are called special files. Each 1/O device is
assigned » path name, usually in /dev, For example, the printer might be /dev/ip, ter~
minal, 1 might be /deviityl, and the network might.be /devinet.

WI-Apple1701110

SEC. 73 FUNDAMENTAL CONCEPTS IN UNIX 291

These special files can be accessed the same way as any other files, No special
commands or system calls are needed, The usual READ and WRITE system calls will
do just fine. For example, the command

cp file /dev/lp

copies the file to printer, causing it to be printed (assuming that this is permitted).
Programs can open, read, and write special files the same way as they do regular
files. In fact, cp in the above example is not even aware that it is printing. In this
way, no special mechanism is needed for doing I/O.

An additional advantage is that the usual file protection rules apply automatically
to I/O devices. If the protection bits for /dev are set up to prohibit everyone except
the superuser from directly accessing the files in it, then users are prohibited from
doing direct I/O themselves. Restricted access to selected /O devices can be given
by installing setuid programs that have permission to read and write the files in /dev,
but do that in limited ways.

For example, a common way to0 manage access to the printer is to make /dev/ip
readable for no one and writable for only the superuser, A program called /pr is
offered to allow users to print files. What lpr does is copy the files specified in its
arguments to a spooling directory, where a daemon with access to /dev/lp takes them
out and prints them in order, It should be clear that /dev/ip need not necessarily be
owned by the superuser. All that matters is that the daemon has access 1o it. They
could both be owned by daemon for exampie. By having the [/O devices integrated
into the file system like this, great fiexibility in access can be achieved.

Special files are divided into two categorics, block and character. A block spe-
cial file is one consisting of a sequence of numbered blocks. The key property of the
block special file is that it each block can be individually addressed and accessed. In
other words, 4 program can open a block special file and read, say, block 124 without
first having to read blocks 0 to 123, Block special files are used for disks.

Character special files are normally used for devices that input or output a char-
acter stream, Terminals, printers, networks, mice, plotters, and most other YO dev-
ices that accept or produce data for people use character special files. It is not possi-
ble (or even meaningful) to seek to block 124 on a mouse.

Although character special files cannot be randomly accessed, they often need 10
be controlled in ways that block special files do not. Consider, for example, a termi-
nal. In addition to accepting read and write requests, a terminal has a number of spe-
cial characteristics that must be managed. For example, when the user makes a typ-
ing error and wants to erase the last character typed, he presses some key. Some peo-
ple prefer to use backspace, and others prefer DEL. Similarly, to erase the entire line
Just typed, many conventions abound. Some users prefer @, while others prefer
CTRL-U, CTRL-C, or other character. Likewise, to interrupt the running program,
some special key must be hit. Here too, different people have different preferences,

Rather than making a choice and forcing everyone to use it, UNIX allows all these
special functions and many others 1o be customized by the user. A special system
call is generally provided for setting these options. This system call also handles tab
cxpansion, enabling and disabling of character echoing, conversion between carriage

Wi-Apple1701111

Exhibit 3

WI-Apple1701112

TANENBAUM

3

ANDREW S

WI-Apple1701113

Hibrars o Congeess Catsloging i Fubtioasion Dz
Twenbau, Ancrew, B, (:iatf) L

includes index,)
y TJIQWW Qorrgnisrs—Prograrwning.
InJ0ATI8 190 001642 832916
{-13-854480-1

]Ta Suzanne, Barbara, Marvin and the memory of Sweetie w I

Productioweditorial supervision: Nancy Milnamaw
Manwfaciuring buyer: Gordon Qsbourne

© 1984 by Prentice-Hall, Inc., Englowood Cliffs, N, J. 07632

All rights reserved. No past of this book
may be reproduced in any form or by any means
without permission in writing from the publisher.

109 87 6

Printed in the United States of America

ISBN O-13-854449-1

PRENTICE-HALL INTERNATIGNAL,, INC., London
PRENTICE-HALL OF AUSTRALIA BTY. LTD., Sydney

. EINTORA PRENTICE-HALL DO BRASK, LTDA,, Rio de Janeiro
PRENTICE-HALL OF CANADA, LT, Toronto
PRENTICE-HALL OF INDVA PRIVATE LD, New Delli
PRENTICE-HALL OF JAPAR, INC., Tokyo
PRENTICH-HALL OF SOUTHEAST ASIA PTE. LTD., Singapore
WHITEHALL BOOKS LTD., Wellingion, New Zealand

WI-Apple1701114

SEC, 34

MICROPROCESSORS AND MICROCOMPUTERS

3.4.2. Microcomputer Buses

95

The control pins regulate the flow and timing of data to and from the micropro-
cessor and have other miscellaneous uses. Their number and function vary consider-
ably among microprocessors. Some pins regulate memory access, others deal with
VO, and some are needed for power, ground, and clock signals. We will describe the
control pins in more detail below, after having described how the various components
of a microcomputer are interconnected,

The components of a microcomputer, the microprocessor, memory, and IO con-
troller chips, are connected by a collection of parallel wires called a bus. The lines

(wires) in the bus can be classified as address, data, or control. They correspond
closely but not exactly, to the microprocessor’s pins. Several buses have been stand-
ardized by IEEE and other organizations to facilitate interconnection of processors,
memories, and other devices from different vendors (Boberg, 1980; Burr et al., 1979;
Elmquist et al., 1979; Gilbert, 1982).

Figure 3-31 illustrates a simple microcomputer with a 2K X 8 EPROM for the
program, a 2K X 8 RAM for data, and an VO chip. In this figwre, the 16 address
lines (called the address bus), the 8 data lines (called the data bus), and the
(unspecified number of} control lines (called the contrel bus) are shaded to indicate
that more than one line is present.

16-bit address bus

...................

1/0

£ £ 4
B 4 7 7
i 11 40N 16
Micro- : 2K x 8 3 2K x 8
processor| [EPROM SE RAM
, B . ,
' 4 '4 [4
8 8 8 8

...

Fig. 3-31. A microcomputer with EPROM, RAM, and an /O chip.

Another convention used in the figure is the short diagonal line with a number,
telling how many bits are meant. For example, the microprocessor is connected to all

WI-Apple1701115

Exhibit 4

WI-Apple1701116

marking,

IR

WIi-Apple1701117

Windows NT Performance Monitoring,
Benchasrking, snd Thaing

Foluske. T Bidssimsk; Sand Finshany

Caperighe € 1998 by Noew Ridosy Publishing

S0 vights morerval N pare o his boisk may be soproduced
af fatamiennd i Ay v ur by Wiy sedi, deutianid ot
merhaival, incinding phowgomdsg wearding. o by-aay
MR, WRHQUL Wiiken

infurmption: sarage s teseiowal)
permsion fraw the pabdishes, axoeps o e tacluion of
Heivd Querativas i & ravieve

Tnteenatinnal Sasdand Sovk DNumber 16283424

Libaey of Congerss Caradugy Gard Fsmstsay: P88
) £y

Bripsnd i thie Usiied Stams of Americ

MG W W W ALY 3

intorpreRasinn ol the pristing sode The tghmoss doulfes
Sighr msmsby i the yeneof S books prinvings the aghie
nvvit atgtediphy the stmber of the Bonky prisdeg o
sty the pranssg code BT it that the St primsing
55 e ks oosnred fr J9ER,

Csnamierd @R Beowndes and Rath Saws Serdf by Shausfion

P

Cympueres Pulllching

Texdeorarks

AR svere wantioned i1 i bouk thit e Kiwwe 1o ba tdes
warky ovsTevicy maths have bean uppsogtsndy copiralized.
e Rabrs Sultishing CRRROT AR T i wyuncy of B
indhrsuation, W of s wenw in s baak dhoukl ot be wggands
e o adfeotiog the validiy of any taderman ue wevice wadl

Wienting wnd Disclhabmer
Hort hus been g o msake this bowk s somplaw
cuvate v possidle, bus s wavsseay @ fienow &

vy
sy @ \
fraplied. The inforsaten poccilsd i s an s i e, The
angions sea the publher sholl hove neither labidie ne
peaibaliny 0wy PRISOR OF ensy With wpvCe 10 sy
Toss ot dusionts Aty S the infonnadun sessained e
s s

Expcative Editor

Limida Raes Brsgeelssasss

Avguisitions Badivor
Haren Wachs

Diweloprasnt Eidbos

Cheissopher Clevelasd

Musuging Bditwr
Caroliue Roop
Projecs Bditor
Fred Herrbman
Copy Bditwe
Kris Strasnans
Trdsxsr

T Wedghv
Techndcal Bt
Wil Audasrar
Proofreeder
Shert Replin
Prosdection

Sreve Balie-GitFond
Lowds Posten, fr.

WI-Apple1701118

phee T - Unteestanding Windows NT Architeciure

Network Resources

Nevworking is buils i 1o Wisndows INT, which includes 2 basis peer-to-peer avtwink
server that consmaniastes waing the Server Mesage Block (SMB) protocal, This SMB
pratocad §s what wakes NT compatible with the old Microioft Nezwork and LAN
Manager, As with maiy other operagng sysiesns, NT & deslgned o ollow the Opes
Systenns Intetconnect {81 sevnn-layer model. Chaptar 4, “Determining Systew
Parformunee Olgersives discasay more on the specifics of each layer,

You shoudd be failiar with twa components of the INT networkiag srchitectuse:
e peawork teilirecror and the neewiek server.

The redivector provides the facllities for one NT masfine o sevess other srsouwes
on othiet wachings on the treework, The Windows INT redirsctor, forinstance, can
acess wenote Hles and printers. Because she vedirector vies the SMB protocel it is
complanely complians with DOS, Windows, and oveit O8/2 sysweins, You s, think of
the redirector componenis &y the “client” side of the chent/server dpchitectise. This
s thay a- the chiene, e redirecon Wants 1o COnNecy {02 SEEVEr [REOUITE 0me-
wheze o the network

The network server s wlss complisnt with the SMB pracorol You ‘s think of the
srexwark serves a5 the “sevver” side of the clent/srrver aechitecnaer, Thiv sesns thias
the network server is sespamible for accepting 0d processing requesss. from. clent
suchines, Becanse NT is SMB-coruplizas, it 2ag accept sequents wov anly trom other
Windows N'T systesms, bt slo fom other systens tunaing LAN Mansger soltwae,

To comumunicate with dilfirent types of netwark systeris, W needs to allow for
the nsaiabion and use of differens wanspor protocols, In Windows IN'T, wanspors pro-
tocaly are implemented as deivers, To avoid the problemm of Jetting » pusticilar wans-
pott paotacal know which type of inpus the protocol deiver expects, NT inpletreny
what is callad & anasport deiver ineciave (T30, T b 3 alngle progranuning inesrface
that sedizecrors ard other Nigh-teeel setwark drivers vse, 1 16 the TIN that atlows
weddirovtons and network servers w be indepandent from the tansport layes of the O8F
rsodel.

170 Bus Architecture
Whers a5 spphication i Joaded and runaing, the progesm will o than likely need 10
make seme type of request 1o sither get or teceive data fon a periphersl, In fist, éhis
sequirestant exists even before die program runs, When 3 program executes, the opes-
ating systom must fieat get the progsse frow che hasd drive, Paxe of the programis
then tranaferred from the shisk (or whatever mexdia the program vesides in). Mast el
based systams provide the option of inwalling intedice cards st different bus typs.
The systass contains 3 bus consroller tha is sesponsible for servicing the reguest &) and
fomn the poripheral device.

The 1/0 arvhitectune plags an imporeine rale in sysiem optiearzation. Regardless of
how much memory you have or how st your processor is, if the duw iy movieg @
the paripheral at 3 sfow rate, tat will become your bottleneck.

WI-Apple1701119

Summsry

fnesd xysoems provide an Bubiz, 160, o 32 i by, Obvicusly, the 32-bk b e the
ideal implsmanmdion, The stowss of the avallable buy architectures i the I5A {Indasry
Srindard Archirectuse) bux, The 1A bus has v wanslex sae of $hB/sec. 184 inclustes
bots % S-bit and 16-Bit 170 bus A Periphesd Component Inteconnect) bus, on
the mther hand, 38 2 35-bit bus, which oveans it it con address che Al GOB, The PO
bus is alse a 1YEMBAsec bus, which iy a sigaificene improvement from the ISA bus
aehitsoiare,

Be on the tookout far b faster POT o rebitecture, Cyrrendly, devaloper S5 working 0% & AL P bus
Piat wilt ingrors the speed 8 1SEMBliee.

Summary

Yo wrdersand the watlable cholces for optimizing the sysem, It is imporaat fnow
e NT aschitecture. WY i indtalled on 2 computer systen, and you have many
chiiost Sr various TOMPULEE SYSIy KERKees, sack &3 IMERINKY, Procesior, hard dlisk,
perwark, sd 17O bus srchitectuse.

Winsdows NT was designed with an wye towsed maodulirity wnd robustness.
Undortunately, NT was abo desigssd with backwand cumpatibility In mind, which
eans ¢ areies all the oxcess biggagy hecessary To run exising LOF and 16-bic
Widows spplications.)

Subsequent chaptess By this hook wddvess v dewd oprimization of the Windows
NT wyssern, This fuse chaper prepared you o refieslied your memory about the et~
wal wirkings of WE You witl see how these NT feasures can sopetitmes adversely
affect NP perforsmance. Luckily, you can muke changes 1o the BT aysiem 10 OvRTCOmE
these deficiencies and meke NT work as the system it was fiwended to be,

11

WI-Apple1701120

38 Chapterd Simulating System Bottienscks.

Hardware and Software Interaction

Budore hnaching into dpwlstgons of the individud wsowrtey, let’s exasnine biriefly
{;wt a conuputer iy divided ingo 3 series of components that work sogather to provid
servives to-the user’s dpplications, Figurr 3.1 oy the layout of 3 rypicsl fnteblased
CORIPULLT SYStenL

Moherbowd rT—
EEERRRE
1
HAEY {1
I ;
Ldldad l i
Memary %
Mamory Bus e AN R %
o " i
! ! !
Bystem Bus {
prrT———
H b N H
: |
! !
TN oy
Pt TV

Figure 3.1 Layout of the tpived Dt luedware COMPIIET Fystem,

A tlie heatt of the systom is & ceral processing wnik ({CPRUL Thix processor has its
v, Leiell cache nusmory and, in additen, could have a secondary Leveb-2 cachu. 1o
Winsdtaws NT, the system can have mare than ong processor cach with its own Levels
1 wr Level-2 cache soemury Al of the processars, however, share the s physical
RAS. The RAM and the CPU communicate via 3 high-speed J2-bit bus,

Looking Ahead

Laser in Chaprer £, Ogsunizing CPU Parformunce.” you will take # closer look
at the CPU wehitectuee, Yon will see how. the archirecture of the CPU dependh
e not-only the manutacres, such as Inted or AMD, buy also the maodel. For
exmnple, the memory bus and cache structure of 3 Peatium Pro is different from
that of 3 Pentiney HoAbe, Chaprer 6 bas discussion ot the xewer technologies
fiat are emerging, Techaolopies such as SDRAM and 109MHr memary bus
svseens Will furdher snhance procesor performance.

WI-Apple1701121

Hardware and Software interaction

Connected o this 32-biv bus is an /U0 controller that 3 rwponsible for the wmter-
e o the CPU to the attached peripherals, Possible peripherals connected in this
maener inclade hard disks, CD-ROMs, network cards, mice, keyboards, and so on.
Murey af these devices are conncesed direstly to themotherboatd, but many require
acteivional intorfice cards stch as a SCSI scanmer devive, which requires & STUST card

in the lotet platforn architecture, the 170 bus axhitecture can be St Lo-big, or
32-hit This architecture depends on the type of 1/ bus that was built i o the PG,

Bus speeificaons indude ISA, BISA, and PCL The (54 i the oldex of the technolo-

ies wnd typically supports che B-bit and 16-hit ranges. The EISA s 3 32-bit fonction-

aliny shar sn't frequently used anvraore, POT i commont snd is nsuslly built in 0 a

systen Lo run 4t 33-hin however, the speadication and technofogy can run &t da-bic.

Exavaples of the intosface cards that suppars these bas topologies ase 1SAL EISA,

sral PCL
The CPU, memuosy; dishs, puripherals, and 17O busex all-work together w allow

apgications w koad and e, 1 you took at s vypical siruation in which the wser

double-clivks an application, thiv is what happenx

1 The application resides on the havd disk, The mouse click wforms the spurating

systern that a cliek has aeenrred, and the OF iaterprets the client as a command

e loneh the appheanon. '

2. The spphication is executed. This muans that the Process Manager (see Chapter 1,
“Urnidetstanding Windows NT Architecture™) allocates the resources necessary W
run the apphication.

3. TheVirteal Memory Manager (VAMM) provides the spplication with up 1o 4GB
of virteel peemory w swone code ind dira in memory. Paxt 'of the program
fastructions will reside in physival RAM, while the st stay on the hard disk,

4. Tares of the progravs, which reside in the physical disk, are meoved lito memory
via the 17O bus.

K, The butructons are moved ffom RAM to the CPU wvia the 32-bit bus,
Tostractions ate stored i oither the Levelo T or Level-2 cache (if present).

6. As the program eseases, the VMM will roturn to the hard disk to load those
parts not available in memaory, The request will travel via the 1/Q controller to
that Fard disk device and back up to the memory.

7. The program instructions, executed by the processor, will concin INSErUCTIONS 1O
do ¢ variery of things such sy desw texr on the sereen, wyite dam to the net-
wuspk, read data from a floppy. and so on

B. These requests will again wavel through the /O controller to the apprapuaie
periphemt device.

‘The respurce botteneck can ocour ar any or all of these stages, The major areas that
this book covers are memory, processor, disk, and netwark resource botdenecks.

39

WI-Apple1701122

Exhibit B — definition of ‘“‘tailored”
from WEBSTER’S NEW TWENTIETH
CENTURY DICTIONARY 1858 (2d
ed. 1983).

WI-Apple1701123

WI-Apple1701124

NEW UNIVERSAL

UNABRIDGED

DELUXE
SECOND EDITION

'BASED UPON THE BROAD FOUNDATIONS LAID DOWN BY

Noah Webster

EXTENSIVELY REVISED BY THE PUBLISHER’S EDITORIAL STAFF UNDER THE GENERAL SUPERVISION OF
JEAN L. McKECHNIE

INCLUDING ETYMOLOGIES, FULL PRONUNCIATIONS, SYNONYMS, AND AN ENCYCLOPEDIC SUPPLEMENT OF

GEOGRAPHICAL AND BIOGRAPHICAL DATA, SCRIPTURE PROPER NAMES, FOREIGN WORDS AND PHRASES,

PRACTICAL BUSINESS MATHEMATICS, ABBREVIATIONS, TABLES OF WEIGHTS AND MEASURES, SIGNS AND
- SYMBOLS, AND FORMS OF ADDRESS ’

ILLIJSTRA:FED THROUGHOUT

Dorset & Baber

WI-Apple1701125

WEBSTER’S NEW TWENTIETH
CENTURY DICTIONARY

Second Edition

Copyright © 1983 and 1955, 1956, 1957, 1958, 1959, 1960, 1962, 1964, }
1968, 1970, 1975, 1977, 1979 by Simon & Schuster, a Division of Guif & Western Corporation)
Full-Color Plates Copyright © 1972 by Simon & Schuster , a Division of Gulf & Western Corporation

All rights reserved !
including the right of reproduction i
in whole or in partin any form

Published by New World Dictionaries/Simon and Schuster

A Simon & Schuster Division bf Guif & Western Corporation

Simon & Schuster Building

Rockefeller Center

1230 Avenue of the Americas

New York, New York 10020

SIMON AND SCHUSTER, TREE OF KNOWLEDGE and colophon are trademarks

of Simon & Schuster.

Dictionary Editorial Offices

New World Dictionaries

850 Euclid Avenue

Cleveland, Qhio 44114

Manufactured in the United States of America

K 20 19 18

Library of Congress Catalog Card Number: 83-42537

- 1SBN 0-671-41819-X

Previous editions of this book were pub-

lished by The World Publishing Company,

~ William Collins +World Publishing Co., Inc.
and William Collins Publishers, Inc.

WI-Apple1701126

tailed

tidled, ¢. having a (specified kind of) tail; cau-
date; principally in combination, as in short-
tailed, boblailed, ring-tailed, etc.
2. in botany, having a taillike appendage,
3. shaped like a tail.
till end, 1. the rear or bottom end of any-
thing.
2. the concluding or last part of anything.
3. [pl.} inferior samples of corn,
tailfeath’8r (feth’), a rectrix; one of the feath-
ers of a bird's tail,
tail fin, the candal fin of a fish.
tail/flow”&r, n. any plant of the genus Anthu-

rium,
tdil giate, the gate at the lower end of a canal .

lock,

tidil’gdte, », a tailboard, as of a wagon,

tail gripe, any climbing shrub of the genus
Artaboirys, native to tropical Africa and Asia,
the fruit of which is supported bya recurving
peduncle.

tailVing, ». 1. [pl.] waste or refuse in various
processes of milling, mining. distilling, etc.

2. in building, the part of a projecting
brick, stone, etc. embedded in a wall,

3. a defect in printing calico caused by an
imperfect process,

4, in electricity, (a) a residual discharge
affecting the receiver of a telegraph systern,
tending to make the signals run together;
(b) a residual or return charge or current in
the transmission of electromagnetic waves
through a dielectric.

tail lamp, a taillight,
tiaille (tal), #. [Fr., from failler, to cut.]

1. a tally. [Obs. . ,

2. & French feudal tax imposed by the king
ora lord.

3. form or shape, especially of the bust,

4. the waist of a dress or its fit, cut, cte.
tiail/less, 4. having no tail,) .
taild8ur? (ta-y&rf), n. [Pr. Lailler, to cut] the

dealer or banker in various IFrench card
games.
tdillie, n: [Fr. lailler, to cut.] in Scots law, tail.
tdil’light, »n. a light at the back of a vehicle to
warn approaching vehicles of its presence at
night: also ¢ail lamp, -
taill-loir? (td-ywéar’), n. {Fr. tailler, to cut.] in
architectiure, an abacus.
t3i%10r, n. [Fr. aillenr, from tailler, to cut.]

1. a person who makes, repairs, or alters
clothes, especially suits, coats, etc. \

2. inzoology, (a) a tailorbird; (b) the silver-
sides,

merchant lailor; sce under merchant.

tailor's chair; a legless seat with a back rest,
allowing the occupant to sit crosslegged.

tailor’'s muscle; the sartorius.
ay1or, v.i.; tailored, pi, pp.; tailoring, ppr.

1. to work as & tailor,

2. to deal with tailors, -as for clothing.
tﬁi’lélr, o4, 1. to make (clothes) by tailor's

work.

2. to fit or provide (a person) with clothes
made by a tailor.

3. to cut, form, produce, alter, etc. $0 as to
meet requirements or particular conditions;
as, her novel is tailored 10 popular tastes.

4, to fashion (women's garments, ete,) with
trim, simple lines like those of men’'s clothes,

t31/18e-bird, n. one of various birds, as those of
the genus Orthofomus or allied genera, con-
structing a nest by sewing leaves together
and lining the case with some soft substance,

31’10 es8, #. a woman tailor,

tai’1or-ing, ». 1, the business of a tailor,

2. the workmanship or skill of a tailor,

tai’16r-mide, o. made by or as by a tailor or
according tohismethods; specifically, (o) made
with trim, simple lines: said of a woman’'s
garment; (b) made to order or to meet par-
ticular conditions; as,, furniture tailor-made
for the small apartment. . .

téll’piéce, ». 1. a piece or part added to or

forming the end. of something, as (&) in a-

. Jathe, the tailpin; (b) in mining, a snore
piece. . - - R .
2. the small triangular piece of wood at the
lower end of-a violin, cello, ete., to which the
strings are attached.

3. ashort beam or rafter with one end tailed

in a wall and the other'supported by a header.
4, in printing, an ornamental design, en-
graving, etc, put at the end of a chapter or at
the bottom of a. page. -)
S, in entomology, one of the parts making
up & pygidium.
tail’pin, n. the adjustable screw on a rear
spindle.

1858

il pipe, n. 1. an exhaust pipe at the rear of
an automotive vehicle,
2. the exhaust duct of a jet enging.
tdil pline, a horizontal supporting surface at
the rear of an aircraft; a stabilizer.
tdilrice, #. 1. the lower part of a millrace.
2, the channel through which water flows
after going over a water wheel,
3. a water channel to carry away tailings
from a mine.
tdil’spin, =, the descent of an airplane with
nose down and tail spinning in circles over-
head: often used figuratively: also laid spin.
tail/stock, n. the adjustable part of a lathe,
containing the dead center which holds the
worlk.
tdil switch’/ing (swich/), a method of switch-
ing trains at stations by means of which they
may be drawn out tail end first,
tdil wa’t8r, the water flowing from the buckets
of a water wheel in motion.
tiiil wind, a wind blowing from behind an air-
plane, ship, ete. in motion,
tiil’zie, n. (Fr. tosller, to cut] in Scots law,

ail,

tain, #. (ME. teine, a thin plate, L. tania, a
band.] thin tin plate; also, tin feil for mirrors,

Tai/no, n.; pl. Tai'nds, 1. [pl] a member of
an extinet, aboriginal Indian tribe of the
West Indies,

2. its Arawakan language.

taint, v.i.; tainted, pi., pp.;rainting, ppr. [contr,
from attaint; meaning influenced by Pr. leint,
pp. of teindre, from L. tingere, 1o wet, moisten,]
1, to affect with something physically in.
jurious, unpleasant, ete,; to infect; to spoil,

2. 10 make morally corrupt or depraved;
as, greed famnled his mind, :

3. to dye; to color, [Obs.)

4. tosully or stain (a person’s honor). {Obu.]

5. to mollify. [Obs.

tdint, v.4. 1. to become tainted.

2. to be affected with incipient putreface
tion, as meat,

taint, #, 1. tincture; stain; color. {Obs.]

2. an infectious or contaminating trace; ine
fection; contamination.
3. a trace of corruption, evil, disgrace, cte,
tdint, n. [shortened form of attaint.] a hit in
tilting. {Obs.]

tiint, ».Z. to make a thrust in tilting. {Obs.]

tiint, .4, to touch as in tilving; also, to thrust,
as a lance, [Obs.

tiaint’less, a. without taint or infection; pure,

taint’less ly, adv. withous taint; in a taintless
Manmer or way.

tiint’dr, #. a dyer, [Rare.}

tiint’lire, n. taint; tinge; defilement; staing
spot. [Obs.]

tdint/wdrm, #. any parasitic worm injurious
to plant or animal life.

Tai’ping (ti), «. lChin. Caipling, great peace:
designation of the dynasty that 'was to be
established.] designating or of a rebellion
(1850-1864) against the Manchu dynasty,
led by Hung Siu-tsuan.

tai’ra, tay’ra, ». [S.Am.] a South American
carnivore, Galere barbura, resembling the
weasel,

tairge, v.t. [ME. taryen, to tarry, delay; OPr,
targer. to delay.] to censure. [Scot.]

tdirn, #. a tarn, {Scot.]

taisch, »n. {Gael.] the phantom or voice of a
person about to die. {Scot.)

tait, n. [Australian.} an Australian marsupial,
Tarsipesrosiratus, about the size of the mouse,
feeding principally upon honey and insects.

tif, n. (Per., from Ar.] a distinguishing head-
dress; a high cap such as is worn by Moham-
medan dervishes,

Tarjik, n. pl. T/ jik, same as Tadzhik,

Tiaj Ma-hil’, [Per., best of buildings.] the fa-
mous mausolewm at Agra, India, built (16307~
1648?) by Shah Jahan for his favorite wife.

CWki, n. pl. ti7kd, [from Sans. tdnks, silver
coing.] the monetary unit of Bangladesh.

tike, wi.; took, P, taken, pp.; taking, por.
[ME. taken; (Jate) AS. tacan, from ON, teka.]
. }. to get by conquering; to .capture; to
seize.

2., to trap or snare (a bird, animal, or fish),

3. (a) to win, as a game, a part of a game,
or a trick at cards; (b) to remove (an oppo-
nent's picce) from play by capturing,

4, to get hold of: to grasp,

5. to hit (a person) in or on some part.,

6. to affect; to attack; as, he was laken by
violent shaking,

take

7. tocatch (a person) in some act, especialfy

a fault.

8. to capture the fancy of; to charm,
9. toget into one's hand or hold; to transfa,

to oneself,

10. to eat, drink, swallow, ete, for bodi1§

nourishment,

11. to get benefit from by exposure to; ag
¥

she took the air, [Rare.]

12, toenter into a special relationship wig .
as, she ook students to add to her inco%qvg}f"}‘;é‘
i

took a wife,

13. to buy; as, he took the first suit that, ¢hee

clerk offered,

14, torent or lease; as, we took a cottage for.

the summer.
15. to get regularly

by paying lor; as, we.

take two daily newspapers.
16. to assume as a responsibility, task, et,:-
5

as, he took the job,

- 17, to assume or adopt (a badge or symp,
of duty, office, etc.); as, the president lo)z/)k t??el

chair,

18. to obligate oneself by; as, he took a voy
19, to become a member of; to join, as g
party or side in a contest, disagreement, ete
20. to assume (something) as if granted or
due one; as, he took the blame; she ook her

leave,

21. tocheat; td trick. {Slang.}

22, in grammar, to

have or admit of ac.

cording to usage, nature, etc.; to be used with
in construction; as, a transitive verb {akes an

object,

23. to choose; to sclect,
24, to use or employ; to resort to; ag, he

took a whip to his son,

28, to travel by; to get in or on as a meang

of traveling; as, she took a train,
26. to go to (a place) for shelter, safety,

v

etc,; as, the birds took cover.
27, to deal with; to consider; as, he fook the .

matter gravely.

28. to occupy; as, fake a chair,
. 29. to require; to demand; to need: used
impersonatly, as, it takes money to make

money. {Collog.}

30. to derive or draw, as a name, quality,

etc,, from,

31. to extract, as for quotation; to excerpt;
as, he took a verse from the Bible.

32. to obtain by observation, experiment,
study, etc.; as, he look a poll.

33, to write down; to copy; as, lake notes,

34. to draw, photograph, ete, a likeness of;
as, let me {ake your picture,

35, to win, as a prize, reward, ete,

36, to be thae object of; to undergo; as, aks

punishment.

37. to occupy oneself in; to enjoy; as, lake

a nap.

38, to accept (sometﬁing offered); as, take

a bet; take advice,

39, to have a specified reaction to; ns, he
took the joke in earnest,

40, to confront and get over, through, st
as, the horse took the jump,

41, to be affected by
took cold,
42. to absorb; to

.
(a disease, etc.); as, he

become impregnated

with, as a dye, polish, ete.
43. (a) to understand the remarks of (8
persan); (b) to comprehend the meaning of

(words, remarks, etc‘.f
interpret in a specified

i {c) to understand or
way.

44, to suppase; to presume; as, I toke him
to be an intelligent person.

45. to have or feel, as an emotion, mental
state, ete.; as, lake pity, take notice,

46. to hold and act upon, as an.idea, resolu-

tion, etc,

47, to do; to perform (an act); as, lake a '

walk,
48, to make or put

forth as the result of

thought, as a resolution or objection. .
49. to aim and execute (a specified action)
at an object; as, he fook a short jab at his

opponent, {Collog.]

50. to conduct; to lead; as, this path lakes

you to the river.

51, to carry; as, fake your skates with you.

52, to remove from

a person or thing; 0

extract; as, the thief took the silver.
53, to remove by death,
54, to subtract; as, the storekeeper tovk &

dollar from the price.

55. to direct (oneself); to go. .

lo take amiss; (a) originally, to be wrong:1
concerning; to mistake; (b) to misunderstan
the reason behind (an act); to become 0

fended at,
lo take al one's word;
rect, ete,

to accept as true, COI

fute, fir, fast, f3ll, findl, cire, at; mate, prey, hér, met; pine, marine, bird, pin; note, move, for, atdm, not; moon, books:

Wi-Apple1701127

Exhibit C — Wikipedia - Bus
(computing),
http://en.wikipedia.org/wiki/Bus_(c

omputing) - (last modified on May
25, 2011)

WI-Apple1701128

http://fen.wikipedia.org/wiki/Bus_(computing) Bus (computing) - Wikipedia, the free encyclopedia

Bus (computing)

From Wikipedia, the free encyclopedia

In computer architecture, a bus is a subsystem that transfers
data between components inside a computer, or between
computers.

Early computer buses were literally parallel electrical wires
with multiple connections, but the term is now used for any
physical arrangement that provides the same logical
functionality as a parallel electrical bus. Modern computer
buses can use both parallel and bit-serial connections, and can

be wired in either a multidrop (electrical parallel) or daisy 4 PCT ‘]éxprcss bus card slots (from top to
chain topology, or connected by switched hubs, as in the case bottom: x4, x16, x1 and x16), compared to
of USB. 2 32-bit conventional PCI bus card slot

(very bottom)

Contents

= 1 History
» 1.1 First generation
= 1.2 Second generation
= 1.3 Third generation

» 2 Description of a bus

3 Bus topology

» 4 Examples of internal computer buses
u 4.1 Parallel
» 4.2 Serial
» 4.3 Self-repairable

5 Examples of external computer buses
» 5.1 Parallel
» 5.2 Serial

= 6 Examples of internal/external computer buses
= 7 See also

= 8 References

= 9 External links

History

First generation

Early computer buses were bundles of wire that attached computer memory and peripherals. Anecdotally
termed the "digit trunk" ,[” they were named after electrical power buses, or busbars. Almost always, there

was one bus for memory, and another for peripherals, </ needed] o these were accessed by separate

1of7

WI-Apple1701129

hitp:/fen.wikipedia.org/wiki/Bus_(computing) Bus (computing) - Wikipedia, the free encyclopedia

instructions, with completely different timings and protocols.

One of the first complications was the use of interrupts. Early computer programs performed /O by
waiting in a loop for the peripheral to become ready. This was a waste of time for programs that had other
tasks to do. Also, if the program attempted to perform those other tasks, it might take too long for the
program to check again, resulting in loss of data. Engineers thus arranged for the peripherals to interrupt
the CPU. The interrupts had to be prioritized, because the CPU can only execute code for one peripheral at
a time, and some devices are more time-critical than others.

To provide modularity, memory and
I/O buses can be combined into a

unified system bus.?! Digital
Equipment Corporation (DEC) further
reduced cost for mass-produced
minicomputers, and mapped
peripherals into the memory bus, so
that the input and output devices
appeared to be memory locations, This
was implemented in the Unibus of the

PDP-11 around 1969 .13

AR

Later computer programs began to
share memory common to several
CPUs. Access to this memory bus had
to be prioritized, as well, The classic,
simple way to prioritize interrupts or
bus access was with a daisy chain,

Early microcomputer bus systems were essentially a passive backplane connected directly or through
buffer amplifiers to the pins of the CPU. Memory and other devices would be added to the bus using the
same address and data pins as the CPU itself used, connected in parallel. Communication was controlled
by the CPU, which had read and written data from the devices as if they are blocks of memory, using the
same instructions, all timed by a central clock controlling the speed of the CPU. Still, devices interrupted
the CPU by signaling on separate CPU pins. For instance, a disk drive controller would signal the CPU that
new data was ready to be read, at which point the CPU would move the data by reading the "memory
location" that corresponded to the disk drive. Almost all early microcomputers were built in this fashion,
starting with the S-100 bus in the Altair 8800 computer system.

In some instances, most notably in the IBM PC, although similar physical architecture can be employed,
instructions to access peripherals (in and out) and memory (mov and others) have not been made uniform
at all, and still generate distinct CPU signals, that could be used to implement a separate I/O bus.

These simple bus systems had a serious drawback when used for general-purpose computers. All the
equipment on the bus has to talk at the same speed, as it shared a single clock.

Increasing the speed of the CPU becomes harder, because the speed of all the devices must increase as
well. When it is not practical or economical to have all devices as fast as the CPU, the CPU must either

enter a wait state, or work at a slower clock frequency temp01'a1'ily,[4] to talk to other devices in the

20f7

WI-Apple1701130

hitp:/fen.wikipedia.org/wiki/Bus_(computing) Bus (computing) - Wikipedia, the free encyclopedia

computer, While acceptable in embedded systems, this problem was not tolerated for long in general-
purpose, user-expandable computers.

Such bus systems are also difficult to configure when constructed from common off-the-shelf equipment.
Typically each added expansion card requires many jumpers in order to set memory addresses, I/O
-addresses, interrupt priorities, and interrupt numbers.

Second generation

"Second generation" bus systems like NuBus addressed some of these problems. They typically separated
the computer into two "worlds", the CPU and memory on one side, and the various devices on the other. A
bus controller accepted data from the CPU side to be moved to the peripherals side, thus shifting the
communications protocol burden from the CPU itself. This allowed the CPU and memory side to evolve
separately from the device bus, or just "bus". Devices on the bus could talk to each other with no CPU
intervention. This led to much better "real world" performance, but also required the cards to be much
more complex. These buses also often addressed speed issues by being "bigger" in terms of the size of the
data path, moving from 8-bit parallel buses in the first generation, to 16 or 32-bit in the second, as well as
adding software setup (now standardised as Plug-n-play) to supplant or replace the jumpers.

However these newer sysiems shared one quality with their earlier cousins, in that everyone on the bus had
to talk at the same speed. While the CPU was now isolated and could increase speed without fear, CPUs
and memory continued to increase in speed much faster than the buses they talked to. The result was that
the bus speeds were now very much slower than what a modern system needed, and the machines were left
starved for data. A particularly common example of this problem was that video cards quickly outran even
the newer bus systems like PCI, and computers began to include AGP just to drive the video card. By 2004
AGP was outgrown again by high-end video cards and other peripherals and has been replaced by the new
PCI Express bus.

An increasing number of external devices started employing their own bus systems as well. When disk
drives were first introduced, they would be added to the machine with a card plugged into the bus, which is
why computers have so many slots on the bus. But through the 1980s and 1990s, new systems like SCSI
and IDE were introduced to serve this need, leaving most slots in modern systems empty. Today there are
likely to be about five different buses in the typical machine, supporting various devices.

Third generation

"Third generation" buses have been emerging into the market since about 2001, including HyperTransport
and InfiniBand. They also tend to be very flexible in terms of their physical connections, allowing them to
be used both as internal buses, as well as connecting different machines together. This can lead to complex
problems when trying to service different requests, so much of the work on these systems concerns
software design, as opposed to the hardware itself. In general, these third generation buses tend to look
more like a network than the original concept of a bus, with a higher protocol overhead needed than early
systems, while also allowing multiple devices to use the bus at once.

Buses such as Wishbone have been developed by the open source hardware movement in an attempt to
further remove legal and patent constraints from computer design.

Description of a bus

3of7

WI-Apple1701131

http:/fen.wikipedia.org/wiki/Bus_(computing) Bus (computing) - Wikipedia, the free encyclopedia
p p 8 puting yclop:

At one time, "bus" meant an electrically parallel system, with electrical conductors similar or identical to
the pins on the CPU. This is no longer the case, and modern systems are blurring the lines between buses
and networks.

Buses can be parallel buses, which carry data words in parallel on multiple wires, or serial buses, which
carry data in bit-serial form. The addition of extra power and control connections, differential drivers, and
data connections in each direction usually means that most serial buses have more conductors than the
minimum of one used in the 1-Wire and UNI/O serial buses. As data rates increase, the problems of timing
skew, power consumption, electromagnetic interference and crosstalk across parallel buses become more
and more difficult to circumvent. One partial solution to this problem has been to double pump the bus.
Often, a serial bus can actually be operated at higher overall data rates than a parallel bus, despite having
fewer electrical connections, because a serial bus inherently has no timing skew or crosstalk. USB,
FireWire, and Serial ATA are examples of this, Multidrop connections do not work well for fast serial
buses, so most modern serial buses use daisy-chain or hub designs.

Most computers have both internal and external buses. An infernal bus connects all the internal
components of a computer to the motherboard (and thus, the CPU and internal memory). These types of
buses are also referred to as a local bus, because they are intended to connect to local devices, not to those
in other machines or external to the computer. An external bus connects external peripherals to the
motherboard.

Network connections such as Ethernet are not generally regarded as buses, although the difference is
largely conceptual rather than practical. The arrival of technologies such as InliniBand and HyperTransport
is further blurring the boundaries between networks and buses. Even the lines between internal and
external are sometimes fuzzy, I2C can be used as both an internal bus, or an external bus (where it is known
as ACCESS .bus), and InfiniBand is intended to replace both internal buses like PCI as well as external
ones like Fibre Channel. In the typical desktop application, USB serves as a peripheral bus, but it also sees
some use as a networking utility and for connectivity between different computers, again blurring the
conceptual distinction.

Bus topology

In a network, the master scheduler controls the data traffic. If data is to be transferred, the requesting
computer sends a message to the scheduler, which puts the request into a queue. The message contains an
identification code which is broadcast to all nodes of the network. The scheduler works out priorities and
notifies the receiver as soon as the bus is available.

The identified node takes the message and performs the data transfer between the two computers. Having
completed the data transfer the bus becomes free for the next request in the scheduler's queue.

» Advantage: Any computer can be accessed directly and messages can be sent in a relatively simple
and fast way.

» Disadvantage: A scheduler is required to organize the traffic by assigning frequencies and priorities
to each signal.

See also: Bus network

Examples of internal computer buses

4 of 7

WI-Apple1701132

hitp:/fen.wikipedia.org/wiki/Bus_(computing) Bus (computing) - Wikipedia, the free encyclopedia

Parallel

» ASUS Media Bus proprietary, used on some ASUS Socket 7 motherboards

s Computer Automated Measurement and Control (CAMAC) for instrumentation systems

» Extended ISA or EISA

» Industry Standard Architecture or ISA

» Low Pin Count or LPC

= MBus

a MicroChannel or MCA

= Multibus for industrial systems

» NuBus or IEEE 1196

» OPTi local bus used on early Intel 80486 motherboards.

s Conventional PCI

» Parallel ATA (aka Advanced Technology Attachment, ATA, PATA, IDE, EIDE, ATAPIL, etc.)
disk/tape peripheral attachment bus

» Q-Bus, a proprietary bus developed by Digital Equipment Corporation for their PDP and later VAX
computers.,

w S-100 bus or IEEE 696, used in the Altair and similar microcomputers

» SBus or IEEE 1496

m SS-50 Bus

s STEbus

» STD Bus (for STD-80 [8-bit] and STD32 [16-/32-bit]), FAQ (http://www.controlled.com
/std/faq.html)

= Unibus, a proprietary bus developed by Digital Equipment Corporation for their PDP-11 and early

VAX computers.

VESA Local Bus or VLB or VL-bus

VMEbus, the VERSAmodule Eurocard bus

PC/104

PC/104 Plus

PC/104 Express

n PCI-104

m PCle-104

Serial

w 1-Wire

» HyperTransport

= 2C

» PCI Express or PCle

» Serial ATA (SATA)

» Serial Peripheral Interface Bus or SPI bus
« UNI/O

= SMBus

Self-repairable

Self-repairable elastic interface buses have recently been invented by IBM. IBM has filed a patent
application on these buses which is undergoing peer review on Peer-to-Patent. The public commentary

5af7

WI-Apple1701133

hitp:/fen . wikipedia.org/wiki/Bus_(computing)

6of7

period closed on July 24, 2008.1°! The IBM invention provides a
spare net which the system switches to in the event that an alternate
net doesn't function.

Examples of external computer buses

Parallel
» HIPPI High Performance Parallel Interface :
» IEEE-488 (aka GPIB, General-Purpose Interface Bus, and from US patent application
HPIB, Hewlett-Packard Instrumentation Bus) 1008008287815

» PC Card, previously known as PCMCIA, much used in oo

laptop computers and other portables, but fading with the
introduction of USB and built-in network and modem connections

Serial

» USB Universal Serial Bus, used for a variety of external devices
= Controller area network ("CAN bus")

n ETA-485

s ¢SATA

» |EEE 1394 interface (FireWire)

Examples of internal/external computer buses

= Futurebus

= InfiniBand

» QuickRing

» Scalable Coherent Interface (SCI)

» SCST Small Computer System Interface, disk/tape peripheral attachment bus
» Serial Attached SCSI (SAS) and other serial SCSI buses

See also

s Address bus

» Bus contention

s Control bus

» Front-side bus (FSB)

» Harvard architecture

» Network On Chip

a List of device bandwidths

References

1. A Sece the carly Australian CSIRAC computer

2. A Linda Null; Julia Lobur (2006). The essentials of computer organization and architecture

Bus (computing) - Wikipedia, the free encyclopedia

(http://books.google.com/books?id=QGPHAIIGE-IC&pg=PA33) (2nd ed.). Jones & Bartlett Learning.

WI-Apple1701134

http:/fen.wikipedia.org/wiki/Bus_(computing Bus (computing) - Wikipedia, the free encyclopedia
p p 8 puting yclop

pp. 33,179-181. ISBN 9780763737696, http://books.google.com/books d=QGPHAIYGE-IC&pg=PA33.

3. A C. Gordon Bell; R. Cady; H. McFarland; J. O'Laughlin; R, Noonan; W. Wulf (1970). "A New Architecture {or
Mini-Computers —The DEC PDP-11" (http://research.microsoft.com/en-us/um/people/gbell/CGB %20Files
/New%20Architecture%20PDP11%20SJCC%201970%20c pdf) . Spring Joint Computer Conference: 657-6735,
http://research.microsoft.conv/en-us/uny/people/gbell/CGB %20Files
/New%20Architccturc%20PDP11%20SICC%201970%20c pdf,

4. » Bray, Andrew C.; Dickens, Adrian C.; Holmes, Mark A. (1983). "28. The One Megahertz bus"
(http://www.nvg.org/bbe/doc/BBCAdvancedUserGuide-PDFzip) (zipped PDF). The Advanced User Guide for
the BBC Microcomputer, Cambridge, UK: Cambridge Microcomputer Centre. pp. 442-443,

ISBN 0-946827-00-1. http://www.nvg.org/bbe/doc/BBCAdvancedUserGuide-PDEzip. Retrieved 2008-03-28.

5. AP peer 1o Patent review page for "System and Method to Support Use of Bus Spare Wires in Connection
Modules" (http://www.peertopatent.org/patent/20080082878/overview)

External links

» Chip Weems' Lecture 12: Buses (http://www.cs.umass.edu/~weems/CmpSci635/635lecture12.html)

= Computer hardware buses (http://www.dmoz.org/Computers/Hardware/Buses//) at the Open
Directory Project

» Computer hardware buses and slots pinouts with brief descriptions (http://pinouts.ru/pin_Slots.shtml)

Retrieved from "http://en.wikipedia.org/wiki/Bus_(computing)"
Categories: Computer buses | Digital electronics | Motherboard

» This page was last modified on 25 May 2011 at 22:17,

» Text is available under the Creative Commons Attribution-ShareAlike License; additional terms may
apply. See Terms of Use for details.
Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.

7 of 7

WI-Apple1701135

