

EXHIBIT 27

Apple, Inc. v. Motorola, Inc. et al Doc. 93 Att. 7

Dockets.Justia.com

http://dockets.justia.com/docket/wisconsin/wiwdc/3:2010cv00662/29072/
http://docs.justia.com/cases/federal/district-courts/wisconsin/wiwdc/3:2010cv00662/29072/93/7.html
http://dockets.justia.com/

Object-Oriented
Programming
An Evolutionary Approach

Brad J. (ox, Ph.D.
Productivity Products International

y4y ADDISON-WESLEY PUBLISHING COMPANY
Reading, Massachusetts • Menlo Park, California
Don Mills, Ontario • Wokingham, England • Amsterdam
Sydney • Singapore • Tokyo • Madrid
Bogota • Santiago • San Juan

Library of Congress Cataloging-in-Publication Data

Cox, Brad J., 1944
Object-oriented programming.

Includes index.
1. System design. 2. Computer software.

I. Title.
QA76.9.S8~C69 1986 003 85-22921
ISBN 0-201-10393-1

Many of the designations used by manufacturers and

sellers to distinguish their products are claimed as

trademarks. Where those designatipns appear in this

book, and Addison-Wesley was aware pf a trademark

claim, the designations have been printed ill initial

caps or all caps.

Reprinted with corrections April, 1987

Copyright © 1986 by Productivity Product? International, Inc., Sandy Hook, CT 06482.
All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form or by any means, electronic, mechanical, photocopyjng,
recording, or otherwise, without the prior written permission of the puplisher. Printed in
the United States of America. Published siir)ultpneously jn Canada.

IJ-HA-89

I Two

Why Object-oriented
Programming?

O bject-oriented programming is not so much a coding technique as it
is a code packaging te.chnique, a way for code suppliers to encapsu--------

late functionality for delivery to consumers. It is this incr~.a",§~9-_.~I!!Pl1~s.is

o.!!J.hl?JeJ~~.igIlshipbetween eQl1Sllm~r.~a.IldsuppHersgf code that sepa-
rates object-oriented and conventional programming (Figure 2.1).

Binding is the process of integrating functionality from different suppliers
into a consumer's code (Figure 2.2). Binding is more than what most program
mers call linking; determining which binary modules must be combined to
produce an executable image, assigning a memory address to each one, and
patching external references with the correct memory addresses. Binding is
the process whereby operators and operands oLP.oJ.l?l1ti('!JlY ..!p:'a~~.iiif~~~!!t
types are.:published by suppliers and used by consumers. .
-Th~;a~e-severalschoois ()(th~~ght ;bout-;h~~~~d how binding should /i~k!fJ
be done, each with distinct strengths and weaknesses. The early binding f?"

approach is the most widely known because it is the only approach provided
in most conventional languages. With early binding, binding occurs while the
consumer's code is being compiled so that the consumer and his tools (the
compiler) bear responsibility for binding. Delayed binding (also known as late
binding or dynamic binding) means that binding is done later than compile-
time, generally while the program is running. Delayed binding moves respon-
sibility for binding away from the consumer and onto the operands, effec-
tively onto the supplier who defined this type of operand.

These approaches are not equjvalent. They are different tools for different
jobs. The difference is in the degree to which the design of a collection's

13

14
Object-oriented Programming: An Evolutionary Approach

Computer

o
Supplier

JII UI iillili.

Figure 2.1. Program
building versus system
building. Conventional
programming tools empha
size the relationship be
tween a programmer and
his code, while object
oriented programming
emphasizes the relation
ship between suppliers and
consumers of code.

contents can be allowed to affect the design of the collection; the degree to

which the consumer's code is coupled to that of the suppliers' (Figure 2.3).

Languages that provide early binding are ideal for building tightly coupled

collections where all uncertainty about the data type provided by each

supplier can be removed at or before the time the consumer's code is

compiled. Dynamic binding is needed in loosely coupled collections where the

consumer's code cannot predict the type of data to be operated on until the

code is being run.
This chapter shows the effect of this coupling by contrasting several bind

ing approaches-in a small example-a program for counting the number of

unique words in a file.

Supplier Supplier

Figure 2.2. Binding.
Binding is the process of
assembling components
from different suppliers
into a larger component
belonging to the consumer.

23
Chapter Two Why Object-oriented Programming?

a programmer might like to compute the vector to its bottom right corner by
writing

vector bottomRight = origin + extent;

This is not possible in C, nor in other conventional languages like Pascal,
FORTRAN, and COBOL.3 These languages do not allow the programmer to
change the meaning of built-in operators like +, so that these operators
cannot be applied to newly added data types like vector. These languages
require the programmer to decompose each operation to primitive types
manually and write:

bottomRight.x = origin.x + extent.x;
bottomRight.y = origin.y + extent.Yi

The supplier of a new data type like vector cannot hide the implementation of
this new type from consumers. They must know the implementation to use
the type, because they must do all binding between vector and operations on
vectors manually whe!"l; they write their code.

The recent trend is toward languages that do provide this flexibility, as
long as all types are known at compile-time. For example, languages like Ada
allow vectors to be defined as a new data type with +, a legal operation on
that type. When compiling the expression

bottomRight = origin + extent

the compiler notices that both origin and extent are vectors, and determines
that a special meaning for the + operator is to be used-the one defined by the
supplier of the vector type. These languages provide early binding in a more
powerful way than C because the meaning of predefined operators like + can
be changed for newly defined data types.

This approach can address some of the difficulties encountered when apply
ing subroutine libraries to the UniqueWords problem. The problem was to
build a new data type, Set, without prematurely committing to the kind of
elements to be stored in the Set. Ada's solution to this class of problem is
called a generic package, which is a package of code with a compile-time
parameter that specifies which type is to be managed ~y the set. The
UniqueWords application would be solved by writing a statement in the
consumer's code that directs the compiler to compile a Set that expects to
manage ByteArrays.

Dynamic Binding and Loosely Coupled Collections
The statically bound languages are perfect for building tightly coupled

collections like vectors and rectangles. They can even be pushed to handle

3But it is possible in C++. See Chapter 3.

I 24
Object-oriented Programming: An Evolutionary Approach

some harder cases like the UniqueWords example. Of course recompiling a

supplier's code every time a consumer provides a new data type can be a prob

lem, and not only because of the time to compile these custom sets and the

memory to store them in. A more fundamental concern is that the supplier

must trust the compiler to protect any proprietary interest he might hold in

those sources. It is hard to see how a commercial marketplace in generic pack

ages could develop as long as suppliers must trust the compiler to protect

their proprietary interests in source code.

It is less widely recognized that statically bound languages are extremely

poor for building loosely coupled collections-problems more like the automo

bile's trunk than its engine. Loosely coupled collections abound in applica

tions like office automation, in information-oriented ensembles like DeskTop,

Envelope, FileFolder, PaperClip, Mailbox, and FileCabinet. A desktop or a

mailbox is a loosely coupled collection because it is neither possible nor desir

able to state, at any point earlier than when the desktop is in use, what kind

of items it contains.
When every data type is known when the code is compiled, static binding

works. Otherwise binding must be done dynamically, period. There is no

choice between static and dynamic binding, since dynamic binding is intrin

sic to the very essense of a loosely coupled collection. However, there is a

choice between one method of implementing dynamic binding and another,

since dynamic binding can be done either manually, by conditional state

ments written by the programmer, or automatically, by the programming

language and the run-time environment.

The choice is shown in Figure 2.4. This figure shows the kinds of objects in

an office automation project as seven folders, each representing the work of a

different programmer. The mailbox folder is open to show the mailbox devel

oper's two choices for how to implement dynamic binding.

The left fragment shows the manual approach. A switcli statement deter-
!

mines which kind of object is on hand, passing control dynamically to the oper-

ation (a C function) that properly manipulates that kind of object. The kind of

object is represented in a field inside each object, represented as a C struc

ture:

struct OfficeMemo { int type; •.. } ;

struct WhiLeYouWereOutNotice { int type; ..• } ;

struct FiLeFoLder { int type; ... } ;

The fragment on the right shows the other approach in which dynamic

binding is provided automatically by the programming language. The mail

box developer, as consumer of the other six data types in this system, specifies

what each item is to do by writing the message expression [item doThisJ, and

it is up to the object to decide how the command, doThis, should be accom

plished for that kind of object.
The difference between these two approaches is crucial to the separation of

responsibility betw:een supplier and consumer. The mailbox developer is the

25
Chapter Two Why Object-oriented Programming?

Calendar

I(FileFolder

I

(Envelope

I (WhileYOuWereOu! \ I

/ PriceList ~

Mailbox

Einding done by each consumer

item = nextltemlnMailbox();

ExpenseA switch(item->type) (
case EXPENSEACCOUNT: expOp();
case PRICELIST: priceOp();
case WHILEYOUWEREOUT: whileYo
case ENVELOPE:
case FILEFOLDE Binding done by each supplier
case CALENDAR:

item = nextltemlnMailbox();default:
}

[item doThis];

t---

l----rt
\I

Non-reusable

I I
Reusable

ITight coupling Loose coupling

I

Figure 2.4. Binding in a
loosely coupled collection.
Dynamic binding can be
implemented either by the
consuIller or by the sup
plier. The former leads to
nonreusable code, because
the consumer's code enu
merates the set of data
types that were known
when the consumer's code
was written. The latter Cl:j.n
produce reusable code,
because data types are
mentioned in only one
place-in the files that
define each data type.

consumer of functionality provided elsewhere in his project. The first
approach requires that he, the consumer, bear the responsibility for determin
ing which supplier's data is at hand in the mailbox and for selecting which
one of the supplier's subroutines is proper for that kind of data. This is called
consumer-side binding. By contrast, the other approach puts that responsibil
ity right where it belongs, on the supplier's side.

The problem with consumer-side binding can be seen in the case labels in
the switch statement. These labels explicitly enumerate the data types this
mailbox is prepared to handle, SQ each time a new type is added anywhere in
this system, the mailbox code must be changed. Something foul has leaked
across the boundary that should have isolated suppliers from consumers.
This mailbox is useless in any other application, because the case labels
explicitly state that it will only work correctly for those six types.

One effect of consumer-side binding is lack of reusability. It forces the mail
box to be written in a way that prevents it from ever being reused in other. . .

applications. Consumer-side binding also leads to lack of malleability. Each
time a new data type is added to the system, the source for the mailbox must
be modified. It cannot withstand the kind of evolutionary changes discussed
in Chapter 1. Supplier-side binding, by contrast, increases the chance that
the mailbox can be reused in other applications because it no longer mention$
types that might change in some new application. And the system becomes
malleable because new data types can be added over time without impacting
working code.

